找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ramanujan’s Notebooks; Part V Bruce C. Berndt Book 1998 Springer Science+Business Media, LLC, part of Springer Nature 1998 Finite.Identity.

[復(fù)制鏈接]
樓主: hormone-therapy
21#
發(fā)表于 2025-3-25 06:47:47 | 只看該作者
Approximations and Asymptotic Expansions, analysis. Asymptotic formulas, both general and specific, can be found in several places in his second notebook, but perhaps the largest concentration lies in Chapter 13. Several contributions pertain to hypergeometric functions, and an excellent survey of several of these results has been made by
22#
發(fā)表于 2025-3-25 09:36:53 | 只看該作者
23#
發(fā)表于 2025-3-25 14:47:58 | 只看該作者
Infinite Series,elementary and miscellaneous analysis from the material on infinite series, and devoted individual chapters to these three topics. Although those three chapters contain a couple of gems, Chapters 37 and 38 have many more jewels.
24#
發(fā)表于 2025-3-25 16:30:38 | 只看該作者
Approximations and Asymptotic Expansions,R. J. Evans [1]. The unorganized pages in the second and third notebooks also contain many beautiful theorems in asymptotic analysis. This chapter is devoted to proving these theorems and a few approximations as well.
25#
發(fā)表于 2025-3-25 22:55:50 | 只看該作者
lts had already been published by others, most had not. Almost a decade after Ramanujan‘s death in 1920, G. N. Watson and B. M. Wilson began to edit Ramanujan‘s notebooks, but, despite devoting over ten years to this project, they never completed their task. An unedited photostat edition of the note
26#
發(fā)表于 2025-3-26 01:57:36 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:35 | 只看該作者
https://doi.org/10.1007/978-1-4612-1624-7Finite; Identity; Invariant; Ramanujan; average; continued fraction; equation; function; theorem
28#
發(fā)表于 2025-3-26 09:55:29 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:56 | 只看該作者
,Ramanujan’s Theories of Elliptic Functions to Alternative Bases,In his famous paper [3], [10, pp. 23–39], Ramanujan offers several beautiful series representations for 1/pi. He first states three formulas, one of which is.where (a)o = 1 and, for each positive integer ...
30#
發(fā)表于 2025-3-26 17:59:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淄博市| 南召县| 涟水县| 达日县| 包头市| 黔西| 余庆县| 红原县| 商水县| 湾仔区| 中方县| 浮山县| 南川市| 肃北| 广丰县| 临泽县| 新巴尔虎右旗| 高碑店市| 宾阳县| 吉木萨尔县| 澄江县| 河北区| 白山市| 龙南县| 剑阁县| 体育| 玉龙| 环江| 印江| 岳普湖县| 黄梅县| 石门县| 昭平县| 六枝特区| 达日县| 略阳县| 囊谦县| 新营市| 巨鹿县| 娄烦县| 吐鲁番市|