找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ramanujan’s Notebooks; Part I Bruce C. Berndt Book 1985 Springer Science+Business Media New York 1985 calculus.exponential function.transfo

[復(fù)制鏈接]
查看: 26127|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:41:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Ramanujan’s Notebooks
副標(biāo)題Part I
編輯Bruce C. Berndt
視頻videohttp://file.papertrans.cn/822/821013/821013.mp4
圖書(shū)封面Titlebook: Ramanujan’s Notebooks; Part I Bruce C. Berndt Book 1985 Springer Science+Business Media New York 1985 calculus.exponential function.transfo
描述Srinivasa Ramanujan is, arguably, the greatest mathematicianthat India has produced. His story is quite unusual:although he had no formal education inmathematics, hetaught himself, and managed to produce many important newresults. With the support of the English number theorist G.H.Hardy, Ramanujan received a scholarship to go to Englandand studymathematics. He died very young, at the age of 32,leaving behind three notebooks containing almost 3000theorems, virtually all without proof. G.H. Hardy andothers strongly urged that notebooks be edited andpublished, and the result is this series of books. Thisvolume dealswith Chapters 1-9 of Book II; each theorem iseither proved, or a reference to a proof is given.
出版日期Book 1985
關(guān)鍵詞calculus; exponential function; transformation
版次1
doihttps://doi.org/10.1007/978-1-4612-1088-7
isbn_softcover978-1-4612-7007-2
isbn_ebook978-1-4612-1088-7
copyrightSpringer Science+Business Media New York 1985
The information of publication is updating

書(shū)目名稱Ramanujan’s Notebooks影響因子(影響力)




書(shū)目名稱Ramanujan’s Notebooks影響因子(影響力)學(xué)科排名




書(shū)目名稱Ramanujan’s Notebooks網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Ramanujan’s Notebooks網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Ramanujan’s Notebooks被引頻次




書(shū)目名稱Ramanujan’s Notebooks被引頻次學(xué)科排名




書(shū)目名稱Ramanujan’s Notebooks年度引用




書(shū)目名稱Ramanujan’s Notebooks年度引用學(xué)科排名




書(shū)目名稱Ramanujan’s Notebooks讀者反饋




書(shū)目名稱Ramanujan’s Notebooks讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:39:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:19:24 | 只看該作者
http://image.papertrans.cn/r/image/821013.jpg
地板
發(fā)表于 2025-3-22 08:19:50 | 只看該作者
https://doi.org/10.1007/978-1-4612-1088-7calculus; exponential function; transformation
5#
發(fā)表于 2025-3-22 12:47:14 | 只看該作者
6#
發(fā)表于 2025-3-22 15:23:48 | 只看該作者
7#
發(fā)表于 2025-3-22 18:15:33 | 只看該作者
Magic Squares,r constructing certain rectangular arrays of natural numbers are given. Most of Ramanujan’s attention is devoted to constructing magic squares. A magic square is a square array of (usually distinct) natural numbers so that the sum of the numbers in each row, column, or diagonal is the same. In some
8#
發(fā)表于 2025-3-22 21:49:41 | 只看該作者
Combinatorial Analysis and Series Inversions,s. Another primary theme in Chapter 3 revolves around series expansions of various types. However, the deepest and most interesting result in Chapter 3 is Entry 10, which separates the two main themes but which has some connections with the former. Entry 10 offers a highly general and potentially ve
9#
發(fā)表于 2025-3-23 03:01:34 | 只看該作者
Iterates of the Exponential Function and an Ingenious Formal Technique,ein the Bell numbers, single-variable Bell polynomials, and related topics are studied. Recall that the Bell numbers .(.), 0 ≤ . ≤ ∞, may be defined by They were first thoroughly studied in print by Bell [1], [2] approximately 25–30 years after Ramanujan had derived several of their properties in th
10#
發(fā)表于 2025-3-23 07:21:04 | 只看該作者
Eulerian Polynomials and Numbers, Bernoulli Numbers, and the Riemann Zeta-Function,rity pertain to Bernoulli numbers, Euler numbers, Eulerian polynomials and numbers, and the Riemann zeta-function. As is to be expected, most of these results are not new. The geneses of Ramanujan’s first published paper [4] (on Bernoulli numbers) and fourth published paper [7] (on sums connected wi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠州市| 汤阴县| 威远县| 富阳市| 汪清县| 正阳县| 冷水江市| 鄂温| 广灵县| 象州县| 长泰县| 富裕县| 荥经县| 五台县| 五莲县| 温宿县| 十堰市| 山西省| 沛县| 宁晋县| 七台河市| 尼木县| 金昌市| 江门市| 宁都县| 孝感市| 大城县| 蓬莱市| 长丰县| 竹山县| 安庆市| 凯里市| 无棣县| 乌兰浩特市| 平顶山市| 伊川县| 安阳市| 金沙县| 南宁市| 乌兰浩特市| 兰西县|