找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ramanujan‘s Lost Notebook; Part II George E. Andrews,Bruce C. Berndt Book 2009 Springer-Verlag New York 2009 Invariant.approximation.ellipt

[復(fù)制鏈接]
樓主: 不同
41#
發(fā)表于 2025-3-28 16:30:48 | 只看該作者
42#
發(fā)表于 2025-3-28 20:44:29 | 只看該作者
Partial Theta Functions,from the classical Jacobi theta function ., we have chosen to name the series in (6.1.1) .. We have chosen the designation partial theta functions, in contrast with L.J. Rogers’s “false theta functions” discussed in Chapters 9 and 11 of our first volume [31, pp. 227–239, 256–259].
43#
發(fā)表于 2025-3-28 23:28:23 | 只看該作者
Special Identities,The first four identities to be examined have previously been proved [20] by relating them to the theory of Durfee rectangles [13]. We provide an alternative development based on functional equations in Section 7.2.
44#
發(fā)表于 2025-3-29 06:17:52 | 只看該作者
45#
發(fā)表于 2025-3-29 10:11:49 | 只看該作者
,Ramanujan’s Cubic Analogue of the Classical Ramanujan–Weber Class Invariants, elegant values of ., for . ≡ 1 (mod 8). The quantity . can be thought of as an analogue in Ramanujan’s cubic theory of elliptic functions [57, Chapter 33] of the classical Ramanujan–Weber class invariant Gn, which is defined by . where . and . is any positive rational number.
46#
發(fā)表于 2025-3-29 13:20:15 | 只看該作者
47#
發(fā)表于 2025-3-29 15:53:57 | 只看該作者
48#
發(fā)表于 2025-3-29 22:05:50 | 只看該作者
,Eisenstein Series and Approximations to π, To the right of each integer, Ramanujan recorded a linear equation in .. and ... Although Ramanujan did not indicate the definitions of . and ., we can easily (and correctly) ascertain that . and . are the Eisenstein series . and ., where .. To the right of each equation in .. and .., Ramanujan ent
49#
發(fā)表于 2025-3-30 01:57:44 | 只看該作者
iscusses q-series, Eisenstein series, and theta functions.InThis is the second of approximately four volumes that the authors plan to write in their examination of all the claims made by S. Ramanujan in The Lost Notebook and Other Unpublished Papers. This volume, published by Narosa in 1988, contain
50#
發(fā)表于 2025-3-30 07:18:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湄潭县| 天津市| 应用必备| 江孜县| 海门市| 龙里县| 商南县| 淳安县| 怀化市| 内江市| 永春县| 美姑县| 福海县| 石首市| 都江堰市| 古丈县| 图木舒克市| 阳西县| 靖边县| 葵青区| 西和县| 长岛县| 公安县| 得荣县| 大悟县| 阿图什市| 长乐市| 双柏县| 城步| 黄平县| 元谋县| 甘泉县| 永登县| 黎平县| 六安市| 潢川县| 瑞金市| 洛扎县| 临澧县| 邹城市| 新余市|