找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ramanujan‘s Lost Notebook; Part II George E. Andrews,Bruce C. Berndt Book 2009 Springer-Verlag New York 2009 Invariant.approximation.ellipt

[復(fù)制鏈接]
樓主: 不同
41#
發(fā)表于 2025-3-28 16:30:48 | 只看該作者
42#
發(fā)表于 2025-3-28 20:44:29 | 只看該作者
Partial Theta Functions,from the classical Jacobi theta function ., we have chosen to name the series in (6.1.1) .. We have chosen the designation partial theta functions, in contrast with L.J. Rogers’s “false theta functions” discussed in Chapters 9 and 11 of our first volume [31, pp. 227–239, 256–259].
43#
發(fā)表于 2025-3-28 23:28:23 | 只看該作者
Special Identities,The first four identities to be examined have previously been proved [20] by relating them to the theory of Durfee rectangles [13]. We provide an alternative development based on functional equations in Section 7.2.
44#
發(fā)表于 2025-3-29 06:17:52 | 只看該作者
45#
發(fā)表于 2025-3-29 10:11:49 | 只看該作者
,Ramanujan’s Cubic Analogue of the Classical Ramanujan–Weber Class Invariants, elegant values of ., for . ≡ 1 (mod 8). The quantity . can be thought of as an analogue in Ramanujan’s cubic theory of elliptic functions [57, Chapter 33] of the classical Ramanujan–Weber class invariant Gn, which is defined by . where . and . is any positive rational number.
46#
發(fā)表于 2025-3-29 13:20:15 | 只看該作者
47#
發(fā)表于 2025-3-29 15:53:57 | 只看該作者
48#
發(fā)表于 2025-3-29 22:05:50 | 只看該作者
,Eisenstein Series and Approximations to π, To the right of each integer, Ramanujan recorded a linear equation in .. and ... Although Ramanujan did not indicate the definitions of . and ., we can easily (and correctly) ascertain that . and . are the Eisenstein series . and ., where .. To the right of each equation in .. and .., Ramanujan ent
49#
發(fā)表于 2025-3-30 01:57:44 | 只看該作者
iscusses q-series, Eisenstein series, and theta functions.InThis is the second of approximately four volumes that the authors plan to write in their examination of all the claims made by S. Ramanujan in The Lost Notebook and Other Unpublished Papers. This volume, published by Narosa in 1988, contain
50#
發(fā)表于 2025-3-30 07:18:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邳州市| 南江县| 锦州市| 新建县| 鄂托克前旗| 泸水县| 眉山市| 巴彦县| 渝北区| 上蔡县| 杭锦后旗| 科尔| 梧州市| 肥东县| 姚安县| 兴文县| 马龙县| 奉贤区| 邵东县| 甘肃省| 丽水市| 克拉玛依市| 五台县| 郎溪县| 武城县| 安多县| 交口县| 九江县| 柳州市| 都安| 高邮市| 阳东县| 武功县| 长宁区| 焦作市| 云浮市| 平和县| 张家港市| 治县。| 拜泉县| 乌审旗|