找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ramanujan‘s Lost Notebook; Part III George E. Andrews,Bruce C. Berndt Book 2012 Springer Science+Business Media New York 2012 Ramanujan tau

[復(fù)制鏈接]
查看: 44475|回復(fù): 45
樓主
發(fā)表于 2025-3-21 16:46:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Ramanujan‘s Lost Notebook
副標(biāo)題Part III
編輯George E. Andrews,Bruce C. Berndt
視頻videohttp://file.papertrans.cn/822/821006/821006.mp4
概述Third volume of a series of five volumes including some of Ramanujan‘s deepest work in the last year of his life.Contains material of which mathematicians currently lack a complete understanding.Focus
圖書封面Titlebook: Ramanujan‘s Lost Notebook; Part III George E. Andrews,Bruce C. Berndt Book 2012 Springer Science+Business Media New York 2012 Ramanujan tau
描述.In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge to examine the papers of the late G.N. Watson.? Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan‘s lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven‘s tenth symphony..This volume is the third of five volumes that the authors plan to write on Ramanujan’s lost notebook and other manuscripts and fragments found in The Lost Notebook and Other Unpublished Papers, published by Narosa in 1988.? The ordinary partition function p(n) is the focus of this third volume. In particular, ranks, cranks, and congruences for p(n) are in the spotlight. Other topics include the Ramanujan tau-function, the Rogers–Ramanujan functions, highly composite numbers, and sums of powers of theta functions..Reviewfrom the second volume:."Fans of Ramanujan‘s mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published
出版日期Book 2012
關(guān)鍵詞Ramanujan tau-Function; Rogers–Ramanujan functions; highly composite numbers; ordinary partition functi
版次1
doihttps://doi.org/10.1007/978-1-4614-3810-6
isbn_softcover978-1-4899-9497-4
isbn_ebook978-1-4614-3810-6
copyrightSpringer Science+Business Media New York 2012
The information of publication is updating

書目名稱Ramanujan‘s Lost Notebook影響因子(影響力)




書目名稱Ramanujan‘s Lost Notebook影響因子(影響力)學(xué)科排名




書目名稱Ramanujan‘s Lost Notebook網(wǎng)絡(luò)公開度




書目名稱Ramanujan‘s Lost Notebook網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ramanujan‘s Lost Notebook被引頻次




書目名稱Ramanujan‘s Lost Notebook被引頻次學(xué)科排名




書目名稱Ramanujan‘s Lost Notebook年度引用




書目名稱Ramanujan‘s Lost Notebook年度引用學(xué)科排名




書目名稱Ramanujan‘s Lost Notebook讀者反饋




書目名稱Ramanujan‘s Lost Notebook讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:21:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:03:01 | 只看該作者
地板
發(fā)表于 2025-3-22 04:48:20 | 只看該作者
5#
發(fā)表于 2025-3-22 11:32:59 | 只看該作者
Ranks and Cranks, Part III,in prime importance. In this chapter, we examine ten tables of congruences satisfied by the coefficients of the generating function for cranks. In contrast to the well-known congruences satisfied by the partition function .(.), each of these tables has only a finite set of values, which Ramanujan re
6#
發(fā)表于 2025-3-22 16:36:16 | 只看該作者
7#
發(fā)表于 2025-3-22 17:13:24 | 只看該作者
Theorems about the Partition Function on Pages 189 and 182,) and .(7.+5)≡0?(mod?7). One of Ramanujan’s proofs hinges upon the beautiful identity . which is given on page 189. We provide a more detailed rendition of the proof given by Ramanujan, as well as a similarly beautiful identity yielding the congruence .(7.+5)≡0?(mod?7). On both pages, Ramanujan exam
8#
發(fā)表于 2025-3-23 01:09:29 | 只看該作者
9#
發(fā)表于 2025-3-23 03:54:58 | 只看該作者
Highly Composite Numbers,teger .<., it happens that .(.)<.(.), where .(.) is the number of divisors of .. In the notes of Ramanujan’s ., the editors relate, “The paper, long as it is, is not complete.” Fortunately, the large remaining portion of the paper was not discarded. It was first set into print by Jean-Louis Nicolas
10#
發(fā)表于 2025-3-23 08:37:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乌珠穆沁旗| 镇巴县| 霸州市| 会理县| 启东市| 伽师县| 汝州市| 闽清县| 阿合奇县| 凤凰县| 辉南县| 浦北县| 调兵山市| 潮安县| 阳高县| 奉新县| 龙川县| 塔城市| 高碑店市| 遂平县| 名山县| 工布江达县| 临汾市| 名山县| 桐柏县| 即墨市| 南京市| 台前县| 赣州市| 海安县| 左贡县| 吴川市| 汝州市| 高雄市| 泸州市| 永定县| 凤山市| 浮梁县| 泸水县| 东台市| 高唐县|