找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ramanujan‘s Lost Notebook; Part IV George E. Andrews,Bruce C. Berndt Book 2013 Springer Science+Business Media New York 2013 Bessel Functio

[復制鏈接]
查看: 33866|回復: 63
樓主
發(fā)表于 2025-3-21 17:54:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Ramanujan‘s Lost Notebook
副標題Part IV
編輯George E. Andrews,Bruce C. Berndt
視頻videohttp://file.papertrans.cn/822/821005/821005.mp4
概述Fourth volume of a series of five volumes including some of Ramanujan‘s deepest work in the last year of his life.Contains material of which mathematicians currently lack a complete understanding.Focu
圖書封面Titlebook: Ramanujan‘s Lost Notebook; Part IV George E. Andrews,Bruce C. Berndt Book 2013 Springer Science+Business Media New York 2013 Bessel Functio
描述.????In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan‘s lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven‘s tenth symphony..This volume is the?fourth?of five?volumes that?the authors plan to write on Ramanujan’s lost notebook.??In contrast to the?first three books on Ramanujan‘s Lost Notebook, the fourth book does not focus on q-series.? Most of the entries examined in this volume fall under the purviews of number theory and classical analysis.? Several incomplete manuscripts of Ramanujan published by Narosa with the lost notebook are discussed.? Three of the partial manuscripts are on diophantine approximation, and others are in classical Fourier analysisand prime number theory.?? Most of the entries in number theory fall under the umbrella of classical analytic number theory.?? Perhaps the most intriguing entries are connected with the classical, unsolved cir
出版日期Book 2013
關鍵詞Bessel Functions; Euler‘s constant; Fourier transforms; Guinand‘s Formula; Koshliakov‘s Formula; Mellin t
版次1
doihttps://doi.org/10.1007/978-1-4614-4081-9
isbn_softcover978-1-4899-9175-1
isbn_ebook978-1-4614-4081-9
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

書目名稱Ramanujan‘s Lost Notebook影響因子(影響力)




書目名稱Ramanujan‘s Lost Notebook影響因子(影響力)學科排名




書目名稱Ramanujan‘s Lost Notebook網絡公開度




書目名稱Ramanujan‘s Lost Notebook網絡公開度學科排名




書目名稱Ramanujan‘s Lost Notebook被引頻次




書目名稱Ramanujan‘s Lost Notebook被引頻次學科排名




書目名稱Ramanujan‘s Lost Notebook年度引用




書目名稱Ramanujan‘s Lost Notebook年度引用學科排名




書目名稱Ramanujan‘s Lost Notebook讀者反饋




書目名稱Ramanujan‘s Lost Notebook讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:00:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:52:54 | 只看該作者
地板
發(fā)表于 2025-3-22 04:40:43 | 只看該作者
Problems in Diophantine Approximation,related to Ramanujan’s only publication in the subject, a problem that he published in the .. In this partial manuscript, Ramanujan provides the best Diophantine approximation to e, approximately 60 years before the theorem was rediscovered and proved in print.
5#
發(fā)表于 2025-3-22 11:37:59 | 只看該作者
A Partial Manuscript on Fourier and Laplace Transforms, one of the highlights of the book, a beautiful new transformation formula involving the logarithmic derivative of the gamma function. An extremely clever device used to prove this transformation formula harkens back to Ramanujan’s paper, ..
6#
發(fā)表于 2025-3-22 16:35:20 | 只看該作者
Integral Analogues of Theta Functions and Gauss Sums,sfies a transformation formula similar to that satisfied by the classical theta functions. The integral can also be thought of as an analogue of Gauss sums or as an analogue of the classical Weierstrass σ-function.
7#
發(fā)表于 2025-3-22 20:30:59 | 只看該作者
8#
發(fā)表于 2025-3-22 22:22:25 | 只看該作者
,Koshliakov’s Formula and Guinand’s Formula,In this chapter, we relate two well-known identities, with the names of N.S. Koshliakov and A.P. Guinand attached to them, which were proved by Ramanujan and recorded in his lost notebook before their discoveries by the aforementioned mathematicians. Ramanujan also derived some related formulas that have not been rediscovered by others.
9#
發(fā)表于 2025-3-23 03:03:41 | 只看該作者
Theorems Featuring the Gamma Function,Some integrals of gamma functions are evaluated. A remarkable approximation to the gamma function, with a slightly less precise approximation submitted as a problem by Ramanujan to the ., is examined in detail.
10#
發(fā)表于 2025-3-23 07:54:55 | 只看該作者
Hypergeometric Series,Two fascinating formulas for bilateral hypergeometric series are proved. The second portion of the chapter is devoted to a beautiful continued fraction related to hypergeometric polynomials.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-11-2 23:32
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
商丘市| 甘孜县| 万荣县| 景东| 五寨县| 韶山市| 昌吉市| 太康县| 皮山县| 白沙| 通渭县| 旬邑县| 三门峡市| 江源县| 海盐县| 嘉黎县| 吴川市| 田林县| 峨眉山市| 佛冈县| 公主岭市| 和平县| 辽中县| 蒙自县| 田阳县| 晋城| 镇宁| 长兴县| 龙门县| 措勤县| 九江县| 甘德县| 吉林市| 思南县| 青龙| 凌源市| 洛阳市| 博湖县| 手机| 西乌珠穆沁旗| 朝阳区|