找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ramanujan Summation of Divergent Series; Bernard Candelpergher Book 2017 Springer International Publishing AG 2017 Ramanujan.Divergent.Ser

[復(fù)制鏈接]
查看: 42381|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:54:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Ramanujan Summation of Divergent Series
編輯Bernard Candelpergher
視頻videohttp://file.papertrans.cn/822/821004/821004.mp4
概述Provides a clear and rigorous exposition of Ramanujan‘s theory of divergent series.A special chapter is devoted to an algebraic formalism unifying the most important summation processes.Only little ba
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Ramanujan Summation of Divergent Series;  Bernard Candelpergher Book 2017 Springer International Publishing AG 2017 Ramanujan.Divergent.Ser
描述The aim of this monograph is to give a detailed exposition of the summation method that Ramanujan uses in Chapter VI of his second Notebook. This method, presented by Ramanujan as an application of the Euler-MacLaurin formula, is here extended using a difference equation in a space of analytic functions. This provides simple proofs of theorems on the summation of some divergent series. Several examples and applications are given. For numerical evaluation, a formula in terms of convergent series is provided by the use of Newton interpolation. The relation with other summation processes such as those of Borel and Euler is also studied. Finally, in the last chapter, a purely algebraic theory is developed that unifies all these summation processes. This monograph is aimed at graduate students and researchers who have a basic knowledge of analytic function theory.
出版日期Book 2017
關(guān)鍵詞Ramanujan; Divergent; Series; Summation; Euler-MacLaurin formula; Borel Summation; Euler Summation
版次1
doihttps://doi.org/10.1007/978-3-319-63630-6
isbn_softcover978-3-319-63629-0
isbn_ebook978-3-319-63630-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Ramanujan Summation of Divergent Series影響因子(影響力)




書目名稱Ramanujan Summation of Divergent Series影響因子(影響力)學(xué)科排名




書目名稱Ramanujan Summation of Divergent Series網(wǎng)絡(luò)公開度




書目名稱Ramanujan Summation of Divergent Series網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ramanujan Summation of Divergent Series被引頻次




書目名稱Ramanujan Summation of Divergent Series被引頻次學(xué)科排名




書目名稱Ramanujan Summation of Divergent Series年度引用




書目名稱Ramanujan Summation of Divergent Series年度引用學(xué)科排名




書目名稱Ramanujan Summation of Divergent Series讀者反饋




書目名稱Ramanujan Summation of Divergent Series讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:39 | 只看該作者
https://doi.org/10.1007/978-3-319-63630-6Ramanujan; Divergent; Series; Summation; Euler-MacLaurin formula; Borel Summation; Euler Summation
板凳
發(fā)表于 2025-3-22 02:19:31 | 只看該作者
地板
發(fā)表于 2025-3-22 06:03:04 | 只看該作者
Dependence on a Parameter,In this chapter we give three fundamental results on the Ramanujan summation of series depending on a parameter.
5#
發(fā)表于 2025-3-22 11:15:55 | 只看該作者
Bernard CandelpergherProvides a clear and rigorous exposition of Ramanujan‘s theory of divergent series.A special chapter is devoted to an algebraic formalism unifying the most important summation processes.Only little ba
6#
發(fā)表于 2025-3-22 16:27:10 | 只看該作者
7#
發(fā)表于 2025-3-22 18:39:50 | 只看該作者
8#
發(fā)表于 2025-3-23 00:34:42 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:51 | 只看該作者
Book 2017od, presented by Ramanujan as an application of the Euler-MacLaurin formula, is here extended using a difference equation in a space of analytic functions. This provides simple proofs of theorems on the summation of some divergent series. Several examples and applications are given. For numerical ev
10#
發(fā)表于 2025-3-23 07:06:22 | 只看該作者
Ramanujan Summation,hird section we interpret this constant as the value of a precise solution of a difference equation. Then we can give in Sect.?. a rigorous definition of the Ramanujan summation and its relation to the usual summation for convergent series.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 22:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涟源市| 普定县| 通海县| 靖宇县| 娄底市| 全南县| 吴旗县| 响水县| 改则县| 织金县| 平昌县| 疏附县| 繁峙县| 黄浦区| 黄陵县| SHOW| 南和县| 塔河县| 建平县| 女性| 大埔区| 康定县| 集安市| 玛多县| 礼泉县| 牙克石市| 阿坝| 德昌县| 宣武区| 万州区| 辛集市| 肇州县| 金川县| 海盐县| 白玉县| 宁南县| 新竹县| 博客| 柘荣县| 休宁县| 绥棱县|