找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ROBOT2022: Fifth Iberian Robotics Conference; Advances in Robotics Danilo Tardioli,Vicente Matellán,Lino Marques Conference proceedings 202

[復(fù)制鏈接]
樓主: 并排一起
51#
發(fā)表于 2025-3-30 11:58:53 | 只看該作者
Evaluating Cognitive Odour Source Localisation Strategies in?Natural Water Streamsfunctions have been proposed to assist in the decision-making process of cognitive strategies, but it is not yet clear which of these information metrics performs better in the OSL process. Additionally, most of these works have only been validated in simulation or in small controllable conditions s
52#
發(fā)表于 2025-3-30 13:25:11 | 只看該作者
53#
發(fā)表于 2025-3-30 19:27:43 | 只看該作者
54#
發(fā)表于 2025-3-30 22:42:07 | 只看該作者
A Novel Odor Source Localization Method via a Deep Neural Network-Based Odor Compassng capacity of common metal oxide semiconductor (MOS) sensors, the OSL robots still lag far behind their biological counterparts. In this paper, we rethink the odor-source direction estimation paradigm of odor compass and propose a deep neural network (DNN) based method to improve both the accuracy
55#
發(fā)表于 2025-3-31 04:09:36 | 只看該作者
Full-stack S-DOVS: Autonomous Navigation in?Complete Real-World Dynamic Scenariosed in a full navigation stack, with a localization system, an obstacle tracker and a global planner. The result is a system that is able to navigate successfully in real-world scenarios, where it may face complex challenges as dynamic obstacles or replanning. The final work is exhaustively tested in simulation and in a ground robot.
56#
發(fā)表于 2025-3-31 06:26:35 | 只看該作者
Artificial Stupidity in?Robotics: Something Unwanted or?Somehow Useful?“Is artificial stupidity something that we must avoid or, on the contrary, something that can be useful for us?” It addresses the definition of the artificial stupidity problem and analyzes some potential methods to solve it.
57#
發(fā)表于 2025-3-31 12:48:08 | 只看該作者
58#
發(fā)表于 2025-3-31 15:27:11 | 只看該作者
Learning from?the?Past: Sequential Deep Learning for?Gas Distribution Mappingased on a multiple time step input from a sensor network. We propose a novel hybrid convolutional LSTM - transpose convolutional structure that we train with synthetic gas distribution data. Our results show that learning the spatial and temporal correlation of gas plume patterns outperforms a non-sequential neural network model.
59#
發(fā)表于 2025-3-31 17:50:16 | 只看該作者
60#
發(fā)表于 2025-3-31 23:52:50 | 只看該作者
Christyan Cruz Ulloa,Miguel Garcia,Jaime del Cerro,Antonio Barrientosren zurück.Die Neuauflage tr?gt den umfangreichen ?nderungen.?"...In seiner umfassenden, exakten, klaren und verst?ndlichen Darstellung stellt dieses Buch einen fast einmaligen und unentbehrlichen Behelf für den Ingenieur in der elektrischen Energietechnik dar, der sich mit der Projektierung, dem Ba
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 01:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳山县| 西吉县| 连云港市| 内乡县| 内丘县| 新龙县| 彩票| 罗甸县| 福贡县| 双柏县| 杭州市| 吉隆县| 息烽县| 丽水市| 同仁县| 昆山市| 贡嘎县| 大悟县| 和硕县| 寿光市| 视频| 高州市| 忻州市| 扶绥县| 苗栗县| 潜江市| 房产| 澜沧| 太和县| 桂阳县| 双江| 满洲里市| 鹿邑县| 全南县| 静海县| 潢川县| 来凤县| 高青县| 南漳县| 应城市| 瑞金市|