找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: R.A. Fisher: An Appreciation; Stephen E. Fienberg,David V. Hinkley Conference proceedings 1980 Springer-Verlag Berlin Heidelberg 1980 Fish

[復(fù)制鏈接]
樓主: foresight
41#
發(fā)表于 2025-3-28 17:56:08 | 只看該作者
Basic Theory of the 1922 Mathematical Statistics Paper,ppeared in 1922 in the 59-page article “On the Mathematical Foundations of Theoretical Statistics” [CP 18]. The paper opens with general remarks about the then-current state, of theoretical statistics.
42#
發(fā)表于 2025-3-28 19:19:50 | 只看該作者
43#
發(fā)表于 2025-3-29 01:09:29 | 只看該作者
44#
發(fā)表于 2025-3-29 06:57:54 | 只看該作者
45#
發(fā)表于 2025-3-29 10:54:19 | 只看該作者
The Behrens-Fisher and Fieller-Creasy Problems,nity satisfied with the mathematically simpler confidence approach, and rejected as logically imperfect and inconsistent in general by those who recognized the strength of the fiducial objectives, the fiducial argument continues under active and sympathetic study today only in a few islands of the statistical world.
46#
發(fā)表于 2025-3-29 15:22:58 | 只看該作者
47#
發(fā)表于 2025-3-29 17:04:22 | 只看該作者
0930-0325 ograph will be a useful source of reference to most of Fisher‘s major papers; it will certainly provide background material for much vigorous discussion." #.Australian Journal of Statistics.#1978-0-387-90476-4978-1-4612-6079-0Series ISSN 0930-0325 Series E-ISSN 2197-7186
48#
發(fā)表于 2025-3-29 21:08:34 | 只看該作者
Fisher and the Analysis of Variance, — his analysis is wrong — nor the role of randomization. Secondly, although the analysis of variance is closely tied to additive models, Fisher rejects the additive model in his first analysis of variance, proceeding to a multiplicative model as more reasonable.
49#
發(fā)表于 2025-3-30 03:21:10 | 只看該作者
50#
發(fā)表于 2025-3-30 04:25:41 | 只看該作者
R.A. Fisher: Some Introductory Remarks,ohesive well-founded discipline. Along the way his strongly-held scientific views and somewhat difficult personality led to disputes, in some of which he was undoubtedly wrong. In almost no avenue of statistical science did he pursue ideas so exhaustively as to leave clear, unambiguous material. His
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 04:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临江市| 榆树市| 新河县| 星座| 乌兰浩特市| 昌吉市| 鄂州市| 浦城县| 临泉县| 乌鲁木齐市| 凤庆县| 仁怀市| 凯里市| 滨海县| 铜川市| 阿拉善左旗| 黎平县| 乡城县| 望都县| 池州市| 乃东县| 承德县| 神池县| 奉新县| 邵武市| 嘉禾县| 吉首市| 道孚县| 边坝县| 犍为县| 南部县| 星子县| 蚌埠市| 侯马市| 英吉沙县| 增城市| 辽中县| 丰都县| 金溪县| 台湾省| 淮滨县|