找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: R For Marketing Research and Analytics; Chris Chapman,Elea McDonnell‘Feit Book 2019Latest edition Springer Nature Switzerland AG 2019 R.St

[復制鏈接]
查看: 7895|回復: 58
樓主
發(fā)表于 2025-3-21 17:46:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱R For Marketing Research and Analytics
編輯Chris Chapman,Elea McDonnell‘Feit
視頻videohttp://file.papertrans.cn/821/820005/820005.mp4
概述Introduces R specifically for marketing applications.Provides the background in R syntax necessary to accomplish immediate tasks.Includes updated R code and packages.Presents a complete approach to te
叢書名稱Use R!
圖書封面Titlebook: R For Marketing Research and Analytics;  Chris Chapman,Elea McDonnell‘Feit Book 2019Latest edition Springer Nature Switzerland AG 2019 R.St
描述.The 2nd edition of .R for Marketing Research and Analytics. continues to be the best place to learn R for marketing research. This book.?.is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis..Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis.. .With its emphasis on data visua
出版日期Book 2019Latest edition
關鍵詞R; Statistics; Marketing research; Data science; Marketing analytics; Econometrics; Machine Learning; Compu
版次2
doihttps://doi.org/10.1007/978-3-030-14316-9
isbn_softcover978-3-030-14315-2
isbn_ebook978-3-030-14316-9Series ISSN 2197-5736 Series E-ISSN 2197-5744
issn_series 2197-5736
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱R For Marketing Research and Analytics影響因子(影響力)




書目名稱R For Marketing Research and Analytics影響因子(影響力)學科排名




書目名稱R For Marketing Research and Analytics網(wǎng)絡公開度




書目名稱R For Marketing Research and Analytics網(wǎng)絡公開度學科排名




書目名稱R For Marketing Research and Analytics被引頻次




書目名稱R For Marketing Research and Analytics被引頻次學科排名




書目名稱R For Marketing Research and Analytics年度引用




書目名稱R For Marketing Research and Analytics年度引用學科排名




書目名稱R For Marketing Research and Analytics讀者反饋




書目名稱R For Marketing Research and Analytics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:23:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:03:44 | 只看該作者
地板
發(fā)表于 2025-3-22 05:31:07 | 只看該作者
5#
發(fā)表于 2025-3-22 10:13:01 | 只看該作者
Comparing Groups: Tables and Visualizationsc segment can best afford our product? Does the product appeal more to homeowners or renters? The answers help us to understand the market, to target customers effectively, and to evaluate the outcome of marketing activities such as promotions.
6#
發(fā)表于 2025-3-22 14:09:19 | 只看該作者
7#
發(fā)表于 2025-3-22 21:03:55 | 只看該作者
8#
發(fā)表于 2025-3-22 22:23:22 | 只看該作者
Reducing Data Complexity might have many items on a consumer survey that reflect a smaller number of underlying concepts such as . with a service, . for a brand, or . for a product. If we can reduce the data to its underlying dimensions, we can more clearly identify the underlying relationships among concepts.
9#
發(fā)表于 2025-3-23 05:10:19 | 只看該作者
10#
發(fā)表于 2025-3-23 06:31:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
铜陵市| 海阳市| 姚安县| 广州市| 杂多县| 丰镇市| 富锦市| 周至县| 阳泉市| 康乐县| 桦川县| 峨山| 蒲城县| 扶绥县| 华坪县| 冀州市| 乐平市| 周口市| 舞钢市| 莲花县| 外汇| 平利县| 洪雅县| 新安县| 伽师县| 遂宁市| 阿拉善右旗| 荃湾区| 渝中区| 邵东县| 泽州县| 台湾省| 方山县| 罗江县| 务川| 怀远县| 仪陇县| 岐山县| 纳雍县| 青龙| 阿拉善右旗|