找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: q-Clan Geometries in Characteristic 2; Ilaria Cardinali,Stanley E. Payne Book 2007 Birkh?user Basel 2007 Dimension.automorphism group.boun

[復(fù)制鏈接]
查看: 18425|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:49:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱q-Clan Geometries in Characteristic 2
編輯Ilaria Cardinali,Stanley E. Payne
視頻videohttp://file.papertrans.cn/783/782038/782038.mp4
概述Includes supplementary material:
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: q-Clan Geometries in Characteristic 2;  Ilaria Cardinali,Stanley E. Payne Book 2007 Birkh?user Basel 2007 Dimension.automorphism group.boun
描述.A q-clan with q a power of 2 is equivalent to a certain generalized quadrangle with a family of subquadrangles each associated with an oval in the Desarguesian plane of order 2. It is also equivalent to a flock of a quadratic cone, and hence to a line-spread of 3-dimensional projective space and thus to a translation plane, and more. These geometric objects are tied together by the so-called Fundamental Theorem of q-Clan Geometry.?The book gives a?complete proof of this theorem, followed by a detailed study of the known examples. The collineation groups of the associated generalized quadrangles and the stabilizers of their associated ovals are worked out completely..
出版日期Book 2007
關(guān)鍵詞Dimension; automorphism group; boundary element method; character; discrete geometry; fundamental theorem
版次1
doihttps://doi.org/10.1007/978-3-7643-8508-8
isbn_softcover978-3-7643-8507-1
isbn_ebook978-3-7643-8508-8Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightBirkh?user Basel 2007
The information of publication is updating

書目名稱q-Clan Geometries in Characteristic 2影響因子(影響力)




書目名稱q-Clan Geometries in Characteristic 2影響因子(影響力)學(xué)科排名




書目名稱q-Clan Geometries in Characteristic 2網(wǎng)絡(luò)公開度




書目名稱q-Clan Geometries in Characteristic 2網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱q-Clan Geometries in Characteristic 2被引頻次




書目名稱q-Clan Geometries in Characteristic 2被引頻次學(xué)科排名




書目名稱q-Clan Geometries in Characteristic 2年度引用




書目名稱q-Clan Geometries in Characteristic 2年度引用學(xué)科排名




書目名稱q-Clan Geometries in Characteristic 2讀者反饋




書目名稱q-Clan Geometries in Characteristic 2讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:09:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:39:00 | 只看該作者
Other Good Stuff,eal and have a wide variety of connections with other geometric objects. For a general reference see J. A. Thas and S. E. Payne [TP94]. For . = 2e see especially [BOPPR1] and [BOPPR2]. In this section we give a very brief introduction to the material contained in these latter two papers.
地板
發(fā)表于 2025-3-22 06:00:47 | 只看該作者
Book 2007sarguesian plane of order 2. It is also equivalent to a flock of a quadratic cone, and hence to a line-spread of 3-dimensional projective space and thus to a translation plane, and more. These geometric objects are tied together by the so-called Fundamental Theorem of q-Clan Geometry.?The book gives
5#
發(fā)表于 2025-3-22 09:36:27 | 只看該作者
The Adelaide Oval Stabilizers, which acts on the points of this line as (0, .) ? (0, y2/δ, ., from which it follows that exactly three points on this line are fixed: the oval point (0, ., 1) and two others: (0, 1, 0) and (0, 0, 1). But the secant line through . and . passes through the point (0, 1, 0), implying that the nucleus must be (0, 0, 1).
6#
發(fā)表于 2025-3-22 16:18:11 | 只看該作者
Book 2007 a?complete proof of this theorem, followed by a detailed study of the known examples. The collineation groups of the associated generalized quadrangles and the stabilizers of their associated ovals are worked out completely..
7#
發(fā)表于 2025-3-22 19:46:48 | 只看該作者
8#
發(fā)表于 2025-3-23 00:36:14 | 只看該作者
9#
發(fā)表于 2025-3-23 05:17:53 | 只看該作者
10#
發(fā)表于 2025-3-23 07:54:25 | 只看該作者
The Payne q-Clans,98] show that up to the usual equivalence of .-clans, the three known examples are the only ones. Since the two non-classical families exist only for . odd, we assume throughout this chapter that . is odd. Then the three known families have the following appearance. There is some positive integer .
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舞阳县| 宁海县| 合山市| 无棣县| 曲周县| 灵石县| 津市市| 资源县| 平罗县| 横山县| 时尚| 娱乐| 天峨县| 崇仁县| 镇雄县| 西充县| 沁阳市| 上饶市| 通海县| 遂宁市| 虞城县| 屯门区| 遂宁市| 融水| 西峡县| 会宁县| 莱芜市| 乌海市| 紫阳县| 苏尼特左旗| 新民市| 安多县| 正蓝旗| 依安县| 平顶山市| 台前县| 淮阳县| 会同县| 富平县| 斗六市| 龙胜|