找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quodons in Mica; Nonlinear Localized Juan F. R. Archilla,Noé Jiménez,Luis M. García-Raf Book 2015 Springer International Publishing Switze

[復(fù)制鏈接]
樓主: 預(yù)兆前
41#
發(fā)表于 2025-3-28 16:39:51 | 只看該作者
Pattern Formation by Traveling Localized Modes in Two-Dimensional Dissipative Media with Lattice Potlular potential. The equation models laser cavities with built-in gratings, which stabilize 2D patterns. The pattern-building process is initiated by kicking a compound mode, in the form of a dipole, quadrupole, or vortex which is composed of four local peaks. The hopping motion of the kicked mode t
42#
發(fā)表于 2025-3-28 22:21:28 | 只看該作者
A Numerical Study of Weak Lateral Dispersion in Discrete and Continuum Modelsdomtsev-Petviashvili I lump and its semi discrete analogue and show the formation of caustics, due to the emission of linear waves, in both cases. We perform numerical experiments in different settings. We show how impurities and prestress can produce new lumps in analogy with one dimensional solito
43#
發(fā)表于 2025-3-29 02:54:22 | 只看該作者
44#
發(fā)表于 2025-3-29 05:39:51 | 只看該作者
45#
發(fā)表于 2025-3-29 11:05:56 | 只看該作者
Moving Discrete Breathers in 2D and 3D Crystalslattices. Crystals can be regarded as anharmonic lattices and it is natural to expect that they support DB. The role of DB in the solid state physics is not yet well understood because their experimental detection is difficult. Nevertheless there exist a large number of theoretical works where the e
46#
發(fā)表于 2025-3-29 13:13:29 | 只看該作者
47#
發(fā)表于 2025-3-29 18:43:10 | 只看該作者
Electron Transfer and Tunneling from Donor to Acceptor in Anharmonic Crystal Latticesht binding approximation and the lattice site dynamics follows the Morse potential. We focus on the transition time from donor to acceptor which is first determined analytically for a rigid lattice and then numerically from computer simulations of the full system at low temperature. For the paramete
48#
發(fā)表于 2025-3-29 21:11:13 | 只看該作者
49#
發(fā)表于 2025-3-30 00:49:11 | 只看該作者
50#
發(fā)表于 2025-3-30 05:27:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
图木舒克市| 永川市| 合山市| 无棣县| 昂仁县| 沿河| 嵊州市| 噶尔县| 乃东县| 固原市| 抚远县| 牡丹江市| 阿拉善左旗| 获嘉县| 盖州市| 容城县| 曲麻莱县| 盐边县| 醴陵市| 汝州市| 巍山| 思茅市| 台安县| 兴业县| 九龙坡区| 沙田区| 泰兴市| 灌阳县| 澄城县| 桦甸市| 宝兴县| 乌鲁木齐市| 沁源县| 萍乡市| 蓝山县| 微山县| 尤溪县| 广饶县| 怀宁县| 扬中市| 乌审旗|