找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quiver Representations; Ralf Schiffler Textbook 2014 Springer International Publishing Switzerland 2014 Associative algebra.Auslander-Reit

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:14:27 | 只看該作者
CMS Books in Mathematicshttp://image.papertrans.cn/q/image/781989.jpg
12#
發(fā)表于 2025-3-23 14:07:59 | 只看該作者
https://doi.org/10.1007/978-3-319-09204-1Associative algebra; Auslander-Reiten theory; Gabriel‘s theorem; Module; Quiver representation; combinato
13#
發(fā)表于 2025-3-23 19:24:27 | 只看該作者
14#
發(fā)表于 2025-3-24 02:09:12 | 只看該作者
Projective and Injective RepresentationsProjective representations and injective representations are key concepts in representation theory. A representation . is called . if the functor Hom(., ?) maps surjective morphisms to surjective morphisms. Dually a representation . is called . if the functor Hom(?, .) maps injective morphisms to injective morphisms.
15#
發(fā)表于 2025-3-24 02:55:08 | 只看該作者
16#
發(fā)表于 2025-3-24 09:36:32 | 只看該作者
17#
發(fā)表于 2025-3-24 12:48:38 | 只看該作者
Ralf SchifflerFirst textbook on representation theory which uses the quiver representations approach.Much shorter than other texts on the subject and is meant as a textbook for a one semester course.Explicit constr
18#
發(fā)表于 2025-3-24 17:06:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:31 | 只看該作者
Bound Quiver Algebrasalgebras play a central role in representation theory, since, for any finite-dimensional algebra . over an algebraically closed field ., the category mod?. is equivalent to the category mod?.∕., for some bound quiver algebra .∕..
20#
發(fā)表于 2025-3-25 02:31:07 | 只看該作者
Quadratic Forms and Gabriel’s Theoremy if . is of Dynkin type . or .. The proof we are presenting uses the classification of positive definite integral quadratic forms associated to graphs and also a little algebraic geometry. For a different proof, using tilting theory, see [8, VII.5].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 14:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻栗坡县| 仪陇县| 大田县| 城固县| 铁岭县| 莱阳市| 乐清市| 武城县| 商水县| 云浮市| 开封市| 怀化市| 托里县| 政和县| 内江市| 德惠市| 安远县| 永川市| 大城县| 扶沟县| 菏泽市| 大足县| 祁阳县| 泰宁县| 馆陶县| 临汾市| 将乐县| 卢龙县| 米脂县| 稻城县| 吉首市| 绥棱县| 延吉市| 余姚市| 凤翔县| 武宣县| 崇仁县| 灵台县| 墨脱县| 常德市| 五河县|