找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Question Answering over Text and Knowledge Base; Saeedeh Momtazi,Zahra Abbasiantaeb Book 2022 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
查看: 12113|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:44:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Question Answering over Text and Knowledge Base
編輯Saeedeh Momtazi,Zahra Abbasiantaeb
視頻videohttp://file.papertrans.cn/782/781812/781812.mp4
概述Provides a comprehensive overview on QA systems over text (TextQA), over knowledge base (KBQA), and hybrid ones.Explains state-of-the-art models used in real applications of QA systems and discusses f
圖書封面Titlebook: Question Answering over Text and Knowledge Base;  Saeedeh Momtazi,Zahra Abbasiantaeb Book 2022 The Editor(s) (if applicable) and The Author
描述.This book provides a coherent and complete overview of various Question Answering (QA) systems. It covers three main categories based on the source of the data that can be unstructured text (TextQA), structured knowledge graphs (KBQA), and the combination of both. Developing a QA system usually requires using a combination of various important techniques, including natural language processing, information retrieval and extraction, knowledge graph processing, and machine learning...After a general introduction and an overview of the book in Chapter 1, the history of QA systems and the architecture of different QA approaches are explained in Chapter 2. It starts with early close domain QA systems and reviews different generations of QA up to state-of-the-art hybrid models. Next, Chapter 3 is devoted to explaining the datasets and the metrics used for evaluating TextQA and KBQA. Chapter 4 introduces the neural and deep learning models used in QA systems. This chapter includes the required knowledge of deep learning and neural text representation models for comprehending the QA models over text and QA models over knowledge base explained in Chapters 5 and 6, respectively. In some of t
出版日期Book 2022
關(guān)鍵詞Information Retrieval; Natural Language Processing; Neural Networks; Deep Learning; Artificial Intellige
版次1
doihttps://doi.org/10.1007/978-3-031-16552-8
isbn_softcover978-3-031-16554-2
isbn_ebook978-3-031-16552-8
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Question Answering over Text and Knowledge Base影響因子(影響力)




書目名稱Question Answering over Text and Knowledge Base影響因子(影響力)學(xué)科排名




書目名稱Question Answering over Text and Knowledge Base網(wǎng)絡(luò)公開度




書目名稱Question Answering over Text and Knowledge Base網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Question Answering over Text and Knowledge Base被引頻次




書目名稱Question Answering over Text and Knowledge Base被引頻次學(xué)科排名




書目名稱Question Answering over Text and Knowledge Base年度引用




書目名稱Question Answering over Text and Knowledge Base年度引用學(xué)科排名




書目名稱Question Answering over Text and Knowledge Base讀者反饋




書目名稱Question Answering over Text and Knowledge Base讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:37:25 | 只看該作者
Introduction to Neural Networks,n this chapter. We study the neural architectures widely used in Sect. 2.3.2 and avoid repeating some of the details described in this section in the following chapters. We also describe the available word representation model from traditional and state-of-the-art models that are utilized in QA systems.
板凳
發(fā)表于 2025-3-22 02:26:19 | 只看該作者
Question Answering over Knowledge Base,ach category, various researches will be presented by discussing their architecture. This chapter includes a comprehensive comparison of proposed methods and describes state-of-the-art models in terms of both simple and complex QA.
地板
發(fā)表于 2025-3-22 07:45:18 | 只看該作者
5#
發(fā)表于 2025-3-22 08:46:31 | 只看該作者
Question Answering in Real Applications,ll discuss the architecture of these full pipeline QA approaches as well as their applications. Considering the advantages of both textual data and knowledge bases, the real applications of QA aim to benefit from both sources. Therefore, in this chapter, we will see how a combination of both approaches can be used in real scenarios.
6#
發(fā)表于 2025-3-22 16:30:19 | 只看該作者
Saeedeh Momtazi,Zahra AbbasiantaebProvides a comprehensive overview on QA systems over text (TextQA), over knowledge base (KBQA), and hybrid ones.Explains state-of-the-art models used in real applications of QA systems and discusses f
7#
發(fā)表于 2025-3-22 19:26:09 | 只看該作者
8#
發(fā)表于 2025-3-22 21:58:57 | 只看該作者
https://doi.org/10.1007/978-3-031-16552-8Information Retrieval; Natural Language Processing; Neural Networks; Deep Learning; Artificial Intellige
9#
發(fā)表于 2025-3-23 03:07:24 | 只看該作者
978-3-031-16554-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
10#
發(fā)表于 2025-3-23 05:54:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长子县| 偃师市| 巫山县| 施甸县| 万山特区| 新建县| 云和县| 河池市| 海宁市| 习水县| 谢通门县| 聂拉木县| 清水县| 西宁市| 蒲城县| 喀什市| 温泉县| 永平县| 郧西县| 永新县| 呼伦贝尔市| 苍溪县| 玉林市| 宣城市| 元朗区| 通江县| 常山县| 乌鲁木齐县| 乌鲁木齐县| 黔西| 济阳县| 桐梓县| 凯里市| 静海县| 乐昌市| 盐亭县| 房山区| 建阳市| 广安市| 浦县| 札达县|