找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quaternionic Integral Transforms; A Machine-Generated Eckhard Hitzer Book 2023 The Editor(s) (if applicable) and The Author(s), under excl

[復(fù)制鏈接]
樓主: 出租車
11#
發(fā)表于 2025-3-23 12:33:12 | 只看該作者
12#
發(fā)表于 2025-3-23 16:01:32 | 只看該作者
13#
發(fā)表于 2025-3-23 19:32:35 | 只看該作者
14#
發(fā)表于 2025-3-24 01:00:40 | 只看該作者
Octonion Fourier Transform,l linear time-invariant systems, to three-dimensional linear time-invariant differential systems, and to real valued Lipschitz functions of three variables. Finally, an octonion version of offset linear canonical transforms is introduced.
15#
發(fā)表于 2025-3-24 05:18:40 | 只看該作者
Further Quaternion Integral Transforms, that often are motivated by generalizing known scalar integral transforms to higher dimensions, taking advantage of how quaternions geometrically meaningfully and efficiently combine several signal components. This chapter is devoted to survey these new types of quaternionic integral transforms.
16#
發(fā)表于 2025-3-24 10:21:21 | 只看該作者
Trends in Mathematicshttp://image.papertrans.cn/q/image/781650.jpg
17#
發(fā)表于 2025-3-24 14:43:56 | 只看該作者
https://doi.org/10.1007/978-3-031-28375-8Quaternion integral transforms; Quaternion Fourier transforms; Quaternion wavelet transforms; Quaternio
18#
發(fā)表于 2025-3-24 17:42:24 | 只看該作者
Quaternion Wavelet Transform (QWT),Fourier transforms lack localization, this is remedied using localized wavelets of various shapes that can be shifted, scaled and rotated. Naturally this has also been applied for obtaining ..
19#
發(fā)表于 2025-3-24 22:48:37 | 只看該作者
Quaternionic Moments,This short chapter surveys five papers containing a variety of quaternionic moment applications in fields like color image watermarking, image representation and recognition, bio-signal watermarking, and quaternionic fractional-order pseudo-Jacobi Fourier moments.
20#
發(fā)表于 2025-3-25 01:06:55 | 只看該作者
Eckhard HitzerA Machine-Generated Literature Overview of quaternionic integral transforms.Adopts a novel approach using state-of-the-art AI book content generation.A useful reference for those interested in explori
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂托克前旗| 台湾省| 湘潭县| 慈溪市| 泰州市| 金门县| 杭州市| 三原县| 松原市| 青铜峡市| 格尔木市| 新民市| 贞丰县| 新兴县| 吉林省| 贵德县| 津市市| 鄂托克前旗| 武平县| 时尚| 桑植县| 清水县| 渝北区| 白山市| 三江| 长泰县| 台东县| 神农架林区| 任丘市| 文成县| 正镶白旗| 柏乡县| 繁峙县| 丹东市| 越西县| 成武县| 曲松县| 巍山| 汝阳县| 中西区| 元阳县|