找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quaternion and Clifford Fourier Transforms and Wavelets; Eckhard Hitzer,Stephen J. Sangwine Book 2013 Springer Basel 2013 complex numbers.

[復(fù)制鏈接]
樓主: counterfeit
21#
發(fā)表于 2025-3-25 04:57:44 | 只看該作者
22#
發(fā)表于 2025-3-25 09:06:09 | 只看該作者
Bochner’s Theorems in the Framework of Quaternion Analysiser–Stieltjes integral .. The purpose of this chapter is to give a characterization of the class . and to give a generalization of the classical theorem of Bochner in the framework of quaternion analysis.
23#
發(fā)表于 2025-3-25 13:57:18 | 只看該作者
Bochner–Minlos Theorem and Quaternion Fourier TransformThe first part of this chapter features certain properties of the asymptotic behaviour of the quaternion Fourier transform. In the second part we introduce the quaternion Fourier transform of a probability measure, and we establish some of its basic properties. In the final analysis, we introduce th
24#
發(fā)表于 2025-3-25 17:43:17 | 只看該作者
Square Roots of –1 in Real Clifford Algebras1. This extends to a geometric interpretation of quaternions as the side face bivectors of a unit cube. Systematic research has been done [33] on the biquaternion roots of –1, abandoning the restriction to blades. Biquaternions are isomorphic to the Clifford (geometric) algebra .. of ?.. Further res
25#
發(fā)表于 2025-3-25 21:35:36 | 只看該作者
A General Geometric Fourier Transformition of a general geometric Fourier transform covering most versions in the literature. We show which constraints are additionally necessary to obtain certain features such as linearity or a shift theorem. As a result, we provide guidelines for the target-oriented design of yet unconsidered transfo
26#
發(fā)表于 2025-3-26 03:27:29 | 只看該作者
Clifford–Fourier Transform and Spinor Representation of Imageshe usual Weierstrass representation of minimal surfaces (., surfaces with constant mean curvature equal to zero) to arbitrary surfaces (immersed in .). We investigate applications to image processing focusing on segmentation and Clifford–Fourier analysis. All these applications involve sections of t
27#
發(fā)表于 2025-3-26 07:44:17 | 只看該作者
28#
發(fā)表于 2025-3-26 10:00:32 | 只看該作者
Generalized Analytic Signals in Image Processing: Comparison, Theory and Applicationslications to and of their comparison on artificial and real-world image samples..We first start by reviewing the basic concepts behind analytic signal theory and derive its mathematical background based on boundary value problems of one-dimensional analytic functions. Following that, two generalizat
29#
發(fā)表于 2025-3-26 13:15:24 | 只看該作者
30#
發(fā)表于 2025-3-26 17:38:25 | 只看該作者
A Generalized Windowed Fourier Transform in Real Clifford Algebra ,,first introduced from the mathematical aspect by Brackx. In this chapter, we propose the Clifford windowed Fourier transform using the kernel of the CFT. Some important properties of the transform are investigated.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁陵县| 九江县| 云梦县| 汉川市| 晋江市| 奇台县| 永胜县| 三门峡市| 东平县| 大竹县| 衡东县| 和田县| 咸宁市| 峨边| 通化县| 文成县| 通城县| 临桂县| 关岭| 余姚市| 锦屏县| 庄浪县| 南投市| 和林格尔县| 大新县| 隆昌县| 通海县| 太白县| 边坝县| 简阳市| 临泽县| 黔西县| 蒙阴县| 漳浦县| 上犹县| 蕉岭县| 平江县| 烟台市| 古交市| 通州区| 浪卡子县|