找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quaternion Algebras; John Voight Textbook‘‘‘‘‘‘‘‘ 2021 The Editor(s) (if applicable) and The Author(s) 2021 Open Access.Quaternions.Quater

[復(fù)制鏈接]
樓主: 使沮喪
11#
發(fā)表于 2025-3-23 11:17:09 | 只看該作者
12#
發(fā)表于 2025-3-23 15:50:35 | 只看該作者
The Hurwitz orderelds and the arithmetic of their orders. Before we do so, for motivation and pure enjoyment, in this chapter we consider the special case of the Hurwitz order. Not only is this appropriate in a historical spirit, it is also instructive for what follows; moreover, the Hurwitz order has certain except
13#
發(fā)表于 2025-3-23 18:07:40 | 只看該作者
Quaternion ideals and invertibilityand modules over . (in other words, to pursue “l(fā)inear algebra” over .). The ideals of a ring that are easiest to work with are the principal ideals—but not all ideals are principal, and various algebraic structures are built to understand the difference between these two. In this chapter, we conside
14#
發(fā)表于 2025-3-24 00:12:09 | 只看該作者
978-3-030-57467-3The Editor(s) (if applicable) and The Author(s) 2021
15#
發(fā)表于 2025-3-24 05:18:09 | 只看該作者
16#
發(fā)表于 2025-3-24 10:05:04 | 只看該作者
17#
發(fā)表于 2025-3-24 11:59:11 | 只看該作者
18#
發(fā)表于 2025-3-24 15:04:21 | 只看該作者
Simple algebrasns in Chapter .; in the chapters that followed, we showed that quaternion algebras are equivalently noncommutative algebras with a nondegenerate standard involution. Here, we pursue another approach, and we characterize quaternion algebras in a different way, as central simple algebras of dimension 4.
19#
發(fā)表于 2025-3-24 22:28:39 | 只看該作者
20#
發(fā)表于 2025-3-25 02:07:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
田东县| 和田市| 友谊县| 五指山市| 安吉县| 扶风县| 新乡市| 牙克石市| 永德县| 铁岭市| 肥乡县| 克山县| 瑞金市| 金阳县| 榆树市| 锦州市| 安徽省| 石狮市| 黑山县| 阳山县| 阜阳市| 松桃| 绵阳市| 临朐县| 陵川县| 岐山县| 定远县| 德江县| 大城县| 桑植县| 澎湖县| 扶沟县| 札达县| 赣州市| 武威市| 乌海市| 鹰潭市| 虎林市| 调兵山市| 西乡县| 津南区|