找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasiregular Mappings; Seppo Rickman Book 1993 Springer-Verlag Berlin Heidelberg 1993 Extremal Length.Extremale L?nge.L?nge.Nichtlineare P

[復(fù)制鏈接]
查看: 36981|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:56:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Quasiregular Mappings
編輯Seppo Rickman
視頻videohttp://file.papertrans.cn/782/781633/781633.mp4
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Quasiregular Mappings;  Seppo Rickman Book 1993 Springer-Verlag Berlin Heidelberg 1993 Extremal Length.Extremale L?nge.L?nge.Nichtlineare P
描述Quasiregular Mappings extend quasiconformal theory to thenoninjective case.They give a natural and beautifulgeneralization of the geometric aspects ofthe theory ofanalytic functions of one complex variable to Euclideann-space or, more generally, to Riemannian n-manifolds.Thisbook is a self-contained exposition of the subject. Abraodspectrum of results of both analytic and geometric characterarepresented, and the methods vary accordingly. The maintools are the variational integral method and the extremallength method, both of which are thoroughly developed here.Reshetnyak‘s basic theorem on discreteness and openness isused from the beginning, but the proof by means ofvariational integrals is postponed until near the end. Thus,the method of extremal length is being used at an earlystage and leads, amongother things, to geometric proofs ofPicard-type theorems and a defectrelation, which are someof the high points of the present book.
出版日期Book 1993
關(guān)鍵詞Extremal Length; Extremale L?nge; L?nge; Nichtlineare Potentialtheorie; Nonlinear Potential Theory; Poten
版次1
doihttps://doi.org/10.1007/978-3-642-78201-5
isbn_softcover978-3-642-78203-9
isbn_ebook978-3-642-78201-5Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer-Verlag Berlin Heidelberg 1993
The information of publication is updating

書目名稱Quasiregular Mappings影響因子(影響力)




書目名稱Quasiregular Mappings影響因子(影響力)學(xué)科排名




書目名稱Quasiregular Mappings網(wǎng)絡(luò)公開度




書目名稱Quasiregular Mappings網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quasiregular Mappings被引頻次




書目名稱Quasiregular Mappings被引頻次學(xué)科排名




書目名稱Quasiregular Mappings年度引用




書目名稱Quasiregular Mappings年度引用學(xué)科排名




書目名稱Quasiregular Mappings讀者反饋




書目名稱Quasiregular Mappings讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:59:47 | 只看該作者
Basic Properties of Quasiregular Mappings,overy that a nonconstant quasiregular mapping is discrete and open, but put off the proof to Chapter VI. This way we are able to have a coherent geometric treatment without introducing an excessive amount of machinery at the outset. Section 1 on ACL. mappings contains fairly standard preliminary res
板凳
發(fā)表于 2025-3-22 04:24:44 | 只看該作者
地板
發(fā)表于 2025-3-22 07:44:23 | 只看該作者
Applications of Modulus Inequalities,ions will be given in Chapters IV, V, and VII. We start with some global distortion results and continue by proving, among other things, that a nonconstant qr mapping of ?. into itself omits at most a set of zero capacity. A local form of the latter result will be used in the proof of a Picard-type
5#
發(fā)表于 2025-3-22 11:15:43 | 只看該作者
6#
發(fā)表于 2025-3-22 13:19:51 | 只看該作者
Variational Integrals and Quasiregular Mappings, qr mappings as counterparts for harmonic functions in the plane. Nonlinearity enters in the theory for dimensions . ≥ 3: the Euler—Lagrange equations for such variational integrals are not linear, but only quasilinear partial differential equations. For that reason methods familiar from the classic
7#
發(fā)表于 2025-3-22 19:38:24 | 只看該作者
Boundary Behavior,the early stage of the development of the theory some of these counterparts were established by O. Martio and S. Rickman [MR1]. Later M. Vuorinen continued this line of research in a number of articles, see 2.3 and 7.4. The tool in [MR1] and mostly in Vuorinen’s articles is the method of extremal le
8#
發(fā)表于 2025-3-22 23:50:53 | 只看該作者
Mappings into the ,-Sphere with Punctures,the article [R11]. In Section 3 we will give a quantitative growth estimate for mappings of the unit ball into the .-sphere with punctures, which delivers as a special case a counterpart to the Picard-Schottky theorem of classical function theory.
9#
發(fā)表于 2025-3-23 02:44:21 | 只看該作者
Variational Integrals and Quasiregular Mappings, for such variational integrals are not linear, but only quasilinear partial differential equations. For that reason methods familiar from the classical theory are for the most part not applicable to this nonlinear potential theory.
10#
發(fā)表于 2025-3-23 08:04:55 | 只看該作者
0071-1136 aspects ofthe theory ofanalytic functions of one complex variable to Euclideann-space or, more generally, to Riemannian n-manifolds.Thisbook is a self-contained exposition of the subject. Abraodspectrum of results of both analytic and geometric characterarepresented, and the methods vary accordingly
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
壤塘县| 泽州县| 图片| 天祝| 山西省| 延边| 平乡县| 安吉县| 华亭县| 太白县| 浪卡子县| 竹北市| 察哈| 长武县| 栾川县| 潢川县| 乌拉特中旗| 晴隆县| 来宾市| 邳州市| 潼关县| 涟水县| 玛沁县| 奉化市| 泸西县| 襄垣县| 饶平县| 东光县| 手游| 石狮市| 永兴县| 扎鲁特旗| 聂荣县| 清涧县| 怀仁县| 内丘县| 前郭尔| 楚雄市| 凯里市| 潢川县| 广昌县|