找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasi-projective Moduli for Polarized Manifolds; Eckart Viehweg Book 1995 Springer-Verlag Berlin Heidelberg 1995 Algebraische R?ume.Birati

[復(fù)制鏈接]
樓主: Manipulate
31#
發(fā)表于 2025-3-26 22:16:15 | 只看該作者
Moduli Problems and Hilbert Schemes,erent moduli problems of manifolds. As a very first step towards their proofs, we will discuss properties a reasonable moduli functor should have and we will apply them to show that the manifolds or schemes considered correspond to the points of a locally closed subscheme of a certain Hilbert scheme.
32#
發(fā)表于 2025-3-27 04:29:31 | 只看該作者
33#
發(fā)表于 2025-3-27 08:25:31 | 只看該作者
34#
發(fā)表于 2025-3-27 12:24:48 | 只看該作者
35#
發(fā)表于 2025-3-27 16:31:57 | 只看該作者
,D. Mumford’s Geometric Invariant Theory,he statements which are used in this monograph, except for those coming from the theory of algebraic groups, such as the finiteness of the algebra of invariants under the action of a reductive group, we include proofs. Usually we just reproduce the arguments given by Mumford in [59] (hopefully witho
36#
發(fā)表于 2025-3-27 21:46:26 | 只看該作者
37#
發(fā)表于 2025-3-27 23:04:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:54:38 | 只看該作者
Allowing Certain Singularities,gularities or, being very optimistic, to certain reduced schemes. However, nothing is known about the local closedness and the boundedness of the corresponding moduli functors, as soon as the dimension of the objects is larger than two. Reducible or non-normal schemes have to be added to the objects
39#
發(fā)表于 2025-3-28 06:49:24 | 只看該作者
Book 1995meters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [5
40#
發(fā)表于 2025-3-28 14:10:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 17:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇仁县| 大姚县| 从江县| 尼玛县| 天气| 尚志市| 平泉县| 敦煌市| 囊谦县| 黄陵县| 云安县| 昌宁县| 青岛市| 南华县| 藁城市| 清镇市| 长兴县| 杂多县| 克山县| 罗甸县| 赣州市| 伽师县| 勃利县| 宁晋县| 邵武市| 建水县| 五家渠市| 年辖:市辖区| 金沙县| 苏州市| 确山县| 同德县| 乌鲁木齐市| 拜城县| 义乌市| 莒南县| 扶风县| 承德县| 榆社县| 沛县| 武清区|