找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasi-Periodic Motions in Families of Dynamical Systems; Order amidst Chaos Hendrik W. Broer,George B. Huitema,Mikhail B. Sevr Book 1996 Sp

[復(fù)制鏈接]
樓主: controllers
31#
發(fā)表于 2025-3-26 21:12:24 | 只看該作者
32#
發(fā)表于 2025-3-27 04:42:12 | 只看該作者
33#
發(fā)表于 2025-3-27 08:48:57 | 只看該作者
34#
發(fā)表于 2025-3-27 13:23:02 | 只看該作者
Appendices,ordinates (. = 0). We briefly discussed a further simplified situation in § 1.2.1 which concerned 2-tori and was based on circle maps. However, our proof is characteristic for all the other contexts mentioned throughout. For a similar proof in the Hamiltonian setting [the Hamiltonian isotropic (.,0,
35#
發(fā)表于 2025-3-27 15:20:10 | 只看該作者
0075-8434 nvariant torus. This phenomenon is most familiar from Hamiltonian dynamics. Hamiltonian systems are well known for their use in modelling the dynamics related to frictionless mechanics, including the planetary and lunar motions. In this context the general picture appears to be as follows. On the on
36#
發(fā)表于 2025-3-27 21:04:43 | 只看該作者
Introduction and examples,onlinear dynamical systems [67,115,158,356]. In this book we confine ourselves with finite dimensional systems. For the theory of quasi-periodic motions in infinite dimensional dynamical systems, the reader is recommended to consult, e.g., [185,186,279–281] and references therein.
37#
發(fā)表于 2025-3-28 01:05:00 | 只看該作者
38#
發(fā)表于 2025-3-28 03:30:11 | 只看該作者
The continuation theory,r manifold persists under perturbations [67,115,158,356] but becomes, generally speaking, only finitely differentiable [12,347]. However, we can apply the . of the “relaxed” Theorems 2.8, 2.9, 2.11, 2.12 to the restrictions of . and . to the center manifold, see [151, 243,277,278,306] as well as [62,162].
39#
發(fā)表于 2025-3-28 09:06:14 | 只看該作者
40#
發(fā)表于 2025-3-28 10:43:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 05:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清水河县| 信宜市| 平乡县| 双江| 虹口区| 桐城市| 闵行区| 贵州省| 汕头市| 温州市| 巧家县| 兴和县| 当雄县| 昆明市| 汾西县| 汕头市| 松潘县| 大同市| 银川市| 明水县| 泸州市| 丰宁| 尤溪县| 珠海市| 锦屏县| 左云县| 宜兴市| 漳平市| 武功县| 东丽区| 嘉善县| 垣曲县| 阜宁县| 抚宁县| 朝阳县| 福建省| 偏关县| 英吉沙县| 余姚市| 法库县| 扶余县|