找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum versus Classical Mechanics and Integrability Problems; towards a unificatio Maciej B?aszak Book 2019 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: autoantibodies
21#
發(fā)表于 2025-3-25 04:46:51 | 只看該作者
22#
發(fā)表于 2025-3-25 09:08:08 | 只看該作者
23#
發(fā)表于 2025-3-25 12:19:38 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:01 | 只看該作者
Classical Hamiltonian Mechanics, mechanics. The theory is formulated in the frame of Poisson geometry and presymplectic geometry. On the level of statistical Hamiltonian mechanics we introduce the language and notions familiar from the quantum level in order to further unify both theories. In particular we consider such issues as
25#
發(fā)表于 2025-3-25 23:10:27 | 只看該作者
Classical Integrable and Separable Hamiltonian Systems,sed on the notion of separation relations introduced by Sklyanin. Separation relations are the most fundamental objects of modern separability theory as well as allow for classification of all separable systems. We concentrate our attention on the subclass of separable systems for which all constant
26#
發(fā)表于 2025-3-26 02:19:20 | 只看該作者
27#
發(fā)表于 2025-3-26 04:18:10 | 只看該作者
28#
發(fā)表于 2025-3-26 11:26:58 | 只看該作者
Position Representation of Quantum Mechanics over Riemannian Configuration Space,ction of the so called position representation of quantum mechanics over an appropriate class of Riemaniann spaces in any admissible local curvilinear coordinates. In particular, for a flat space and Cartesian coordinates we reconstruct the standard quantization procedure from textbooks of quantum m
29#
發(fā)表于 2025-3-26 15:28:24 | 只看該作者
Position Representation of Quantum Mechanics over Riemannian Configuration Space,resent the reader a class of quantizations of classical St?ckel systems considered in previous chapters, which preserve quantum integrability, quantum superintegrability and quantum stationary separability of related quantum Hamiltonian operators.
30#
發(fā)表于 2025-3-26 18:41:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎赉特旗| 方山县| 安阳市| 乌鲁木齐市| 华蓥市| 富民县| 常熟市| 木兰县| 微山县| 繁昌县| 伊吾县| 乌拉特后旗| 万安县| 行唐县| 内江市| 集安市| 忻城县| 息烽县| 英吉沙县| 五莲县| 桐柏县| 华蓥市| 合川市| 八宿县| 乌恰县| 晋城| 塔河县| 莆田市| 资中县| 盐边县| 新乡市| 宁化县| 辽源市| 临泉县| 镇赉县| 宜兰市| 石泉县| 东兰县| 固镇县| 西城区| 盈江县|