找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum versus Classical Mechanics and Integrability Problems; towards a unificatio Maciej B?aszak Book 2019 Springer Nature Switzerland AG

[復(fù)制鏈接]
查看: 40196|回復(fù): 40
樓主
發(fā)表于 2025-3-21 17:15:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Quantum versus Classical Mechanics and Integrability Problems
副標(biāo)題towards a unificatio
編輯Maciej B?aszak
視頻videohttp://file.papertrans.cn/782/781556/781556.mp4
概述Detailed presentation of an original approach to the theory of quantum integrable systems.With a broad introduction to the general relation between classical and quantum mechanics.Highlights Examples
圖書封面Titlebook: Quantum versus Classical Mechanics and Integrability Problems; towards a unificatio Maciej B?aszak Book 2019 Springer Nature Switzerland AG
描述This accessible monograph introduces physicists to the general relation between classical and quantum mechanics based on the mathematical idea of deformation quantization and describes an original approach to the theory of quantum integrable systems developed by the author..The first goal of the book is to develop of a common, coordinate free formulation of classical and quantum Hamiltonian mechanics, framed in common mathematical language..In particular, a coordinate free model of quantum Hamiltonian systems in Riemannian spaces is formulated, based on the mathematical idea of deformation quantization, as a complete physical theory with an appropriate mathematical accuracy..The second goal is to develop of a theory which allows for a deeper understanding of classical and quantum integrability. For this reason the modern separability theory on both classical and quantum level is presented. In particular, the book presents a modern geometric separability theory, based on bi-Poissonian and bi-presymplectic representations of finite dimensional Liouville integrable systems and their admissible separable quantizations..The book contains also a generalized theory of classical St?ckel tr
出版日期Book 2019
關(guān)鍵詞deformation quantization; geometric deformation; separability theory; bosonic systems; quantum integrabi
版次1
doihttps://doi.org/10.1007/978-3-030-18379-0
isbn_softcover978-3-030-18381-3
isbn_ebook978-3-030-18379-0
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Quantum versus Classical Mechanics and Integrability Problems影響因子(影響力)




書目名稱Quantum versus Classical Mechanics and Integrability Problems影響因子(影響力)學(xué)科排名




書目名稱Quantum versus Classical Mechanics and Integrability Problems網(wǎng)絡(luò)公開度




書目名稱Quantum versus Classical Mechanics and Integrability Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quantum versus Classical Mechanics and Integrability Problems被引頻次




書目名稱Quantum versus Classical Mechanics and Integrability Problems被引頻次學(xué)科排名




書目名稱Quantum versus Classical Mechanics and Integrability Problems年度引用




書目名稱Quantum versus Classical Mechanics and Integrability Problems年度引用學(xué)科排名




書目名稱Quantum versus Classical Mechanics and Integrability Problems讀者反饋




書目名稱Quantum versus Classical Mechanics and Integrability Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:19:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:22:41 | 只看該作者
https://doi.org/10.1007/978-3-030-18379-0deformation quantization; geometric deformation; separability theory; bosonic systems; quantum integrabi
地板
發(fā)表于 2025-3-22 06:07:07 | 只看該作者
5#
發(fā)表于 2025-3-22 11:53:27 | 只看該作者
6#
發(fā)表于 2025-3-22 16:33:16 | 只看該作者
Quantum versus Classical Mechanics and Integrability Problems978-3-030-18379-0
7#
發(fā)表于 2025-3-22 17:27:04 | 只看該作者
y termed the . [6, 7]..This research has led to the formal definition of the complexity exhibited by social networks against the following simple ‘check list’ [5]..Regarding the fulfillment of this list of requirements by social networks, Vega-Redondo refers to the results of previous studies about
8#
發(fā)表于 2025-3-22 21:58:05 | 只看該作者
9#
發(fā)表于 2025-3-23 01:43:28 | 只看該作者
10#
發(fā)表于 2025-3-23 08:36:12 | 只看該作者
Maciej B?aszak of edges has less effect on centrality than the addition of edges. Nevertheless, the stability of the ranking depends on all three parameters: the structure of the network, the type of noise model used, and the centrality metric to be computed. To the best of our knowledge, this is one of the first
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永州市| 肥乡县| 南通市| 吐鲁番市| 永善县| 民和| 安岳县| 大城县| 连云港市| 会昌县| 金寨县| 平阳县| 黄石市| 巧家县| 昆明市| 南溪县| 阿拉尔市| 鲁甸县| 云霄县| 东山县| 沛县| 大新县| 井冈山市| 万年县| 涿州市| 安西县| 屏南县| 天全县| 郓城县| 台中市| 连平县| 洛隆县| 原阳县| 柳林县| 固始县| 牟定县| 阜新| 清河县| 襄汾县| 武城县| 宁明县|