找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Transport in Interacting Nanojunctions; A Density Matrix App Andrea Donarini,Milena Grifoni Book 2024 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: 皺紋
31#
發(fā)表于 2025-3-27 00:04:05 | 只看該作者
ero-state output of systems is computed for specific systems. The Hilbert transform, which is useful in developing complex signals with one-sided spectrum, is presented. The digital differentiator, which approximates the derivative, is described. Finally, the approximation of the DTFT and its invers
32#
發(fā)表于 2025-3-27 04:27:37 | 只看該作者
The Quantum Transport Problem the understanding of the transport dynamics of a nanojunction is enriched by considering not only the average current but also higher order cumulants. Finally, we apply these concepts to define currents in nanoscopic set-ups.
33#
發(fā)表于 2025-3-27 08:59:47 | 只看該作者
34#
發(fā)表于 2025-3-27 11:44:45 | 只看該作者
Transport in Molecular Junctionsrinsic electronic correlations. Vibrational effects are introduced with the help of the archetypal Anderson-Holstein model. The connection between microscopic parameters and transport characteristics is illustrated, with particular focus on the Franck-Condon blockade in molecular single electron tra
35#
發(fā)表于 2025-3-27 14:34:19 | 只看該作者
36#
發(fā)表于 2025-3-27 21:27:13 | 只看該作者
Linear Transport within the Kubo Formalismsed in terms of the current response function of the nanojunction. This quantity is in general not accessible in analytic form. Matters simplify in the case of noninteracting nanojunctions, as we show on the example of archetypal .-site systems.
37#
發(fā)表于 2025-3-27 22:06:31 | 只看該作者
Density Matrix Methods for Quantum Transporterator technique, developed by Nakajima and Zwanzig, and adapt it to fermionic environments. An exact generalized master equation for the reduced operator of an interacting nanojunction is derived. Further, the relevant equations for the current and its cumulants are discussed.
38#
發(fā)表于 2025-3-28 04:07:41 | 只看該作者
39#
發(fā)表于 2025-3-28 08:12:33 | 只看該作者
40#
發(fā)表于 2025-3-28 12:01:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
溧阳市| 阜南县| 弥勒县| 红安县| 安陆市| 繁昌县| 精河县| 陆川县| 商河县| 太谷县| 香河县| 内江市| 江源县| 鲁甸县| 溧阳市| 武冈市| 青河县| 尤溪县| 当雄县| 抚顺县| 耒阳市| 石屏县| 古交市| 宝山区| 桂林市| 积石山| 泰顺县| 兴义市| 永仁县| 赞皇县| 嘉义市| 巴林右旗| 牟定县| 凯里市| 久治县| 无极县| 井陉县| 双江| 宜兰县| 花莲县| 晋江市|