找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Scattering Theory for Several Particle Systems; L. D. Faddeev,S. P. Merkuriev Book 1993 Springer Science+Business Media B.V. 1993

[復制鏈接]
查看: 8083|回復: 39
樓主
發(fā)表于 2025-3-21 16:24:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Quantum Scattering Theory for Several Particle Systems
編輯L. D. Faddeev,S. P. Merkuriev
視頻videohttp://file.papertrans.cn/782/781448/781448.mp4
叢書名稱Mathematical Physics and Applied Mathematics
圖書封面Titlebook: Quantum Scattering Theory for Several Particle Systems;  L. D. Faddeev,S. P. Merkuriev Book 1993 Springer Science+Business Media B.V. 1993
描述The last decade witnessed an increasing interest of mathematicians in prob- lems originated in mathematical physics. As a result of this effort, the scope of traditional mathematical physics changed considerably. New problems es- pecially those connected with quantum physics make use of new ideas and methods. Together with classical and functional analysis, methods from dif- ferential geometry and Lie algebras, the theory of group representation, and even topology and algebraic geometry became efficient tools of mathematical physics. On the other hand, the problems tackled in mathematical physics helped to formulate new, purely mathematical, theorems. This important development must obviously influence the contemporary mathematical literature, especially the review articles and monographs. A considerable number of books and articles appeared, reflecting to some extend this trend. In our view, however, an adequate language and appropriate methodology has not been developed yet. Nowadays, the current literature includes either mathematical monographs occasionally using physical terms, or books on theoretical physics focused on the mathematical apparatus. We hold the opinion that the
出版日期Book 1993
關(guān)鍵詞Integral equation; particles; ring theory; scattering; scattering theory; wave equation
版次1
doihttps://doi.org/10.1007/978-94-017-2832-4
isbn_softcover978-90-481-4305-4
isbn_ebook978-94-017-2832-4
copyrightSpringer Science+Business Media B.V. 1993
The information of publication is updating

書目名稱Quantum Scattering Theory for Several Particle Systems影響因子(影響力)




書目名稱Quantum Scattering Theory for Several Particle Systems影響因子(影響力)學科排名




書目名稱Quantum Scattering Theory for Several Particle Systems網(wǎng)絡(luò)公開度




書目名稱Quantum Scattering Theory for Several Particle Systems網(wǎng)絡(luò)公開度學科排名




書目名稱Quantum Scattering Theory for Several Particle Systems被引頻次




書目名稱Quantum Scattering Theory for Several Particle Systems被引頻次學科排名




書目名稱Quantum Scattering Theory for Several Particle Systems年度引用




書目名稱Quantum Scattering Theory for Several Particle Systems年度引用學科排名




書目名稱Quantum Scattering Theory for Several Particle Systems讀者反饋




書目名稱Quantum Scattering Theory for Several Particle Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:42:41 | 只看該作者
The Method of Integral Equation,This chapter will be devoted to the description of the stationary scattering method based on the use of linear integral equations.
板凳
發(fā)表于 2025-3-22 03:56:34 | 只看該作者
Charged Particles in Configuration Space,In this chapter, we will study the wave functions and the Green functions for systems of charged particles.
地板
發(fā)表于 2025-3-22 04:38:13 | 只看該作者
Mathematical Physics and Applied Mathematicshttp://image.papertrans.cn/q/image/781448.jpg
5#
發(fā)表于 2025-3-22 12:43:55 | 只看該作者
6#
發(fā)表于 2025-3-22 15:51:36 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:25 | 只看該作者
8#
發(fā)表于 2025-3-23 01:08:08 | 只看該作者
Configuration Space. Neutral Particles,solving either the Schr?dinger equation or the differential equations for components with some asymptotics boundary conditions. The main advantage of this so-called differential formalism is that it is very convenient for effective computational methods based on boundary value problems for wave functions.
9#
發(fā)表于 2025-3-23 05:22:16 | 只看該作者
Some Applications,pters. We have no intention to present an overall review of methods for solving the Schr?dinger and compact equations. The selection of subjects is based on our evaluation of the effectiveness of various approaches and on our own research in this field.
10#
發(fā)表于 2025-3-23 06:26:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
句容市| 平湖市| 凭祥市| 高清| 信宜市| 九台市| 会东县| 综艺| 新竹市| 阜宁县| 通州市| 宜城市| 营山县| 广州市| 崇明县| 鱼台县| 建始县| 汝州市| 土默特右旗| 仲巴县| 兴山县| 清涧县| 建始县| 沽源县| 雅江县| 凌海市| 南部县| 隆林| 永丰县| 栾城县| 通许县| 阳朔县| 珲春市| 新龙县| 健康| 鄂温| 嘉定区| 蚌埠市| 万载县| 揭东县| 蒙阴县|