找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Scattering Theory for Several Particle Systems; L. D. Faddeev,S. P. Merkuriev Book 1993 Springer Science+Business Media B.V. 1993

[復制鏈接]
查看: 8083|回復: 39
樓主
發(fā)表于 2025-3-21 16:24:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Quantum Scattering Theory for Several Particle Systems
編輯L. D. Faddeev,S. P. Merkuriev
視頻videohttp://file.papertrans.cn/782/781448/781448.mp4
叢書名稱Mathematical Physics and Applied Mathematics
圖書封面Titlebook: Quantum Scattering Theory for Several Particle Systems;  L. D. Faddeev,S. P. Merkuriev Book 1993 Springer Science+Business Media B.V. 1993
描述The last decade witnessed an increasing interest of mathematicians in prob- lems originated in mathematical physics. As a result of this effort, the scope of traditional mathematical physics changed considerably. New problems es- pecially those connected with quantum physics make use of new ideas and methods. Together with classical and functional analysis, methods from dif- ferential geometry and Lie algebras, the theory of group representation, and even topology and algebraic geometry became efficient tools of mathematical physics. On the other hand, the problems tackled in mathematical physics helped to formulate new, purely mathematical, theorems. This important development must obviously influence the contemporary mathematical literature, especially the review articles and monographs. A considerable number of books and articles appeared, reflecting to some extend this trend. In our view, however, an adequate language and appropriate methodology has not been developed yet. Nowadays, the current literature includes either mathematical monographs occasionally using physical terms, or books on theoretical physics focused on the mathematical apparatus. We hold the opinion that the
出版日期Book 1993
關(guān)鍵詞Integral equation; particles; ring theory; scattering; scattering theory; wave equation
版次1
doihttps://doi.org/10.1007/978-94-017-2832-4
isbn_softcover978-90-481-4305-4
isbn_ebook978-94-017-2832-4
copyrightSpringer Science+Business Media B.V. 1993
The information of publication is updating

書目名稱Quantum Scattering Theory for Several Particle Systems影響因子(影響力)




書目名稱Quantum Scattering Theory for Several Particle Systems影響因子(影響力)學科排名




書目名稱Quantum Scattering Theory for Several Particle Systems網(wǎng)絡(luò)公開度




書目名稱Quantum Scattering Theory for Several Particle Systems網(wǎng)絡(luò)公開度學科排名




書目名稱Quantum Scattering Theory for Several Particle Systems被引頻次




書目名稱Quantum Scattering Theory for Several Particle Systems被引頻次學科排名




書目名稱Quantum Scattering Theory for Several Particle Systems年度引用




書目名稱Quantum Scattering Theory for Several Particle Systems年度引用學科排名




書目名稱Quantum Scattering Theory for Several Particle Systems讀者反饋




書目名稱Quantum Scattering Theory for Several Particle Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:42:41 | 只看該作者
The Method of Integral Equation,This chapter will be devoted to the description of the stationary scattering method based on the use of linear integral equations.
板凳
發(fā)表于 2025-3-22 03:56:34 | 只看該作者
Charged Particles in Configuration Space,In this chapter, we will study the wave functions and the Green functions for systems of charged particles.
地板
發(fā)表于 2025-3-22 04:38:13 | 只看該作者
Mathematical Physics and Applied Mathematicshttp://image.papertrans.cn/q/image/781448.jpg
5#
發(fā)表于 2025-3-22 12:43:55 | 只看該作者
6#
發(fā)表于 2025-3-22 15:51:36 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:25 | 只看該作者
8#
發(fā)表于 2025-3-23 01:08:08 | 只看該作者
Configuration Space. Neutral Particles,solving either the Schr?dinger equation or the differential equations for components with some asymptotics boundary conditions. The main advantage of this so-called differential formalism is that it is very convenient for effective computational methods based on boundary value problems for wave functions.
9#
發(fā)表于 2025-3-23 05:22:16 | 只看該作者
Some Applications,pters. We have no intention to present an overall review of methods for solving the Schr?dinger and compact equations. The selection of subjects is based on our evaluation of the effectiveness of various approaches and on our own research in this field.
10#
發(fā)表于 2025-3-23 06:26:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
襄城县| 建水县| 宣武区| 晋宁县| 宝鸡市| 保康县| 彭泽县| 芜湖县| 林芝县| 文化| 丰镇市| 延吉市| 徐水县| 民勤县| 通河县| 衡水市| 临邑县| 桓台县| 栖霞市| 湘西| 丰顺县| 潮州市| 昌乐县| 阿克苏市| 水富县| 清流县| 汨罗市| 宁陕县| 福州市| 宁陕县| 元江| 德惠市| 郓城县| 延长县| 河北区| 依安县| 文登市| 得荣县| 廊坊市| 石景山区| 溧阳市|