找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Riemannian Geometry; Edwin J. Beggs,Shahn Majid Book 2020 Springer Nature Switzerland AG 2020 noncommutative geometry.quantum grou

[復(fù)制鏈接]
樓主: encroach
21#
發(fā)表于 2025-3-25 05:58:12 | 只看該作者
22#
發(fā)表于 2025-3-25 08:33:58 | 只看該作者
23#
發(fā)表于 2025-3-25 15:21:19 | 只看該作者
24#
發(fā)表于 2025-3-25 19:16:24 | 只看該作者
25#
發(fā)表于 2025-3-25 23:27:13 | 只看該作者
Hopf Algebras and Their Bicovariant Calculi,on associated algebras, including the theory of the quantum Lie algebra of a bicovariant calculus and of braided-Lie algebras in the coquasitriangular case. Basic examples include q-SU. and the associated q-sphere. The chapter ends with the notion of a bar category needed to formulate complex conjugation and *-operations in a more categorical way.
26#
發(fā)表于 2025-3-26 03:08:45 | 只看該作者
0072-7830 mmutative geometry of Alain Connes in a complementary way.Co.This book provides a comprehensive account of a modern generalisation of differential geometry in which coordinates need not commute. This requires a reinvention of differential geometry that refers only to the coordinate algebra, now poss
27#
發(fā)表于 2025-3-26 04:22:50 | 只看該作者
28#
發(fā)表于 2025-3-26 12:17:56 | 只看該作者
https://doi.org/10.1007/978-3-030-30294-8noncommutative geometry; quantum groups; Hopf algebra; differential graded algebra; quantum Levi-Civita
29#
發(fā)表于 2025-3-26 13:25:17 | 只看該作者
Quantum Complex Structures,This chapter formulates noncommutative complex structures along the lines of classical complex manifold theory including a bigrading of the exterior algebra to give a double complex. We then study holomorphic modules and implications for cohomology theories. Examples include the noncommutative torus and the q-sphere.
30#
發(fā)表于 2025-3-26 17:54:44 | 只看該作者
Edwin J. Beggs,Shahn MajidProvides a self-contained and constructive approach to noncommutative differential geometry, which connects to the earlier approach to noncommutative geometry of Alain Connes in a complementary way.Co
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浪卡子县| 万全县| 尚义县| 波密县| 汉阴县| 黎平县| 湛江市| 鄂尔多斯市| 筠连县| 安丘市| 密云县| 泗洪县| 黄龙县| 苗栗市| 蚌埠市| 淮滨县| 凤山市| 汉中市| 利川市| 渝中区| 城固县| 姚安县| 绿春县| 称多县| 申扎县| 醴陵市| 随州市| 彭山县| 新邵县| 柘城县| 兴海县| 犍为县| 大丰市| 大兴区| 永嘉县| 泸水县| 赤城县| 峡江县| 永春县| 北川| 颍上县|