找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Physics; A Functional Integra James Glimm,Arthur Jaffe Book 1987Latest edition Springer-Verlag New York Inc. 1987 Phase.Physics.Qua

[復制鏈接]
樓主: Flexibility
51#
發(fā)表于 2025-3-30 09:20:10 | 只看該作者
52#
發(fā)表于 2025-3-30 15:32:48 | 只看該作者
53#
發(fā)表于 2025-3-30 18:53:43 | 只看該作者
Regularity and Axiomster 11. These basic identities generate series which exhibit regularity and other detailed properties of the quantum field models. The integration by parts identities generate the perturbation expansion of Sections 8.4, 9.4 as well as the high and low temperature expansions studied in Part III and i
54#
發(fā)表于 2025-3-30 23:45:46 | 只看該作者
55#
發(fā)表于 2025-3-31 02:27:14 | 只看該作者
56#
發(fā)表于 2025-3-31 05:28:04 | 只看該作者
http://image.papertrans.cn/q/image/781408.jpg
57#
發(fā)表于 2025-3-31 11:45:18 | 只看該作者
Book 1987Latest editionDescribes fifteen years‘ work which has led to the construc-tion ofsolutions to non-linear relativistic local field e-quations in 2 and 3 space-time dimensions. Gives proof ofthe existence theorem in 2 dimensions and describes manyproperties of the solutions.
58#
發(fā)表于 2025-3-31 16:47:05 | 只看該作者
59#
發(fā)表于 2025-3-31 18:49:05 | 只看該作者
Quantization = Integration over Function Spacetimating integrals.of polynomials . = .(.) with respect to a Gaussian measure . There are a variety of equivalent methods for computing Gaussian integrals of polynomials, such as integration by parts, expansion in Hermite polynomials, or the use of annihilation and creation (raising and lowering) operators.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
本溪市| 潮安县| 海门市| 咸宁市| 遵义市| 峨眉山市| 井研县| 金阳县| 颍上县| 郴州市| 东乡县| 红河县| 明溪县| 阿坝县| 宁德市| 萨迦县| 获嘉县| 屏东市| 平果县| 同德县| 沈阳市| 潢川县| 綦江县| 新绛县| 富阳市| 廉江市| 积石山| 句容市| 福安市| 化德县| 天台县| 会昌县| 宿松县| 太原市| 将乐县| 乐清市| 吴堡县| 同仁县| 唐河县| 晋州市| 斗六市|