找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics of Fundamental Systems 1; Claudio Teitelboim Book 1988 Springer Science+Business Media New York 1988 mechanics.nuclear p

[復(fù)制鏈接]
查看: 26745|回復(fù): 51
樓主
發(fā)表于 2025-3-21 17:10:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Quantum Mechanics of Fundamental Systems 1
編輯Claudio Teitelboim
視頻videohttp://file.papertrans.cn/782/781340/781340.mp4
叢書名稱Series of the Centro De Estudios Científicos
圖書封面Titlebook: Quantum Mechanics of Fundamental Systems 1;  Claudio Teitelboim Book 1988 Springer Science+Business Media New York 1988 mechanics.nuclear p
出版日期Book 1988
關(guān)鍵詞mechanics; nuclear physics; physics; quantum mechanics
版次1
doihttps://doi.org/10.1007/978-1-4899-3728-5
isbn_softcover978-1-4899-3730-8
isbn_ebook978-1-4899-3728-5Series ISSN 1571-571X
issn_series 1571-571X
copyrightSpringer Science+Business Media New York 1988
The information of publication is updating

書目名稱Quantum Mechanics of Fundamental Systems 1影響因子(影響力)




書目名稱Quantum Mechanics of Fundamental Systems 1影響因子(影響力)學(xué)科排名




書目名稱Quantum Mechanics of Fundamental Systems 1網(wǎng)絡(luò)公開度




書目名稱Quantum Mechanics of Fundamental Systems 1網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quantum Mechanics of Fundamental Systems 1被引頻次




書目名稱Quantum Mechanics of Fundamental Systems 1被引頻次學(xué)科排名




書目名稱Quantum Mechanics of Fundamental Systems 1年度引用




書目名稱Quantum Mechanics of Fundamental Systems 1年度引用學(xué)科排名




書目名稱Quantum Mechanics of Fundamental Systems 1讀者反饋




書目名稱Quantum Mechanics of Fundamental Systems 1讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:00:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:29:31 | 只看該作者
地板
發(fā)表于 2025-3-22 05:33:24 | 只看該作者
5#
發(fā)表于 2025-3-22 11:36:34 | 只看該作者
Update on Anomalous Theories,with these.] As a consequence, the symmetry current, whose classical conservation is assured by Noether’s theorem, ceases to be conserved after quantization. We call such a current . it possesses an ., and the coupling of gauge fields to this current becomes problematical [1].
6#
發(fā)表于 2025-3-22 14:04:11 | 只看該作者
The Gravitational Path Integral and Critical Dimensions of Linear and Nonlinear Locally Supersymmet parameter and in this way the Noether current enters in the Ward identities. For local symmetries with external gauge fields one can make a local classical gauge transformation, but if the gauge fields are dynamical, one must instead consider the rigid BRST symmetry of the quantum action.
7#
發(fā)表于 2025-3-22 19:55:28 | 只看該作者
Grassmannian Space-Time Structure as an Origin of Gauge Symmetries, local coordinates {. ., .}, where . and . are a pair of Grassmannian coordinates with no spinorial charge, constitute a very intriguing phenomenon. In this framework, the BRST and anti-BRST operators are naturally introduced as exterior differential operators along the unphysical coordinates . and
8#
發(fā)表于 2025-3-22 23:45:42 | 只看該作者
9#
發(fā)表于 2025-3-23 02:30:50 | 只看該作者
Toward a Complete Theory for Unconventional Vacua,d notion if we try to work in a bounded or a curved space-time, or if we use accelerated observers. In these cases infinite new vacuum notion must be defined; and we must deal with unconventional vacua. In this chapter we introduce a reasonable vacuum definition in all the cases where we deal with n
10#
發(fā)表于 2025-3-23 08:52:01 | 只看該作者
Some Properties of the Solutions of the Back-Reaction Problem,ese equations [1], which rule the dynamic of the space-time metric, have a source term that is the renormalized expectation value of the energy-momentum tensor. The computation of this last object as a function of the metric is a rather difficult task that has been performed only in a few cases.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁陵县| 宝丰县| 万安县| 延安市| 青海省| 内黄县| 英德市| 白山市| 黄大仙区| 平南县| 鄯善县| 区。| 牙克石市| 苍南县| 黄骅市| 柏乡县| 盖州市| 铅山县| 南靖县| 鸡泽县| 上思县| 台中县| 贵阳市| 奉贤区| 涪陵区| 迁西县| 枣庄市| 富平县| 正蓝旗| 宁德市| 修文县| 桃园县| 左云县| 霍邱县| 南宁市| 班玛县| 茂名市| 铅山县| 石家庄市| 昌平区| 宣威市|