找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics in Matrix Form; Günter Ludyk Book 2018 Springer Nature Switzerland AG 2018 Axiomatic Description of Square Matrix.Bohr-S

[復(fù)制鏈接]
樓主: Ejaculation
31#
發(fā)表于 2025-3-27 00:27:39 | 只看該作者
32#
發(fā)表于 2025-3-27 03:01:26 | 只看該作者
33#
發(fā)表于 2025-3-27 08:47:20 | 只看該作者
Angular Momentum,lay. It has an important role in the treatment of atoms and quantum mechanical problems with rotational symmetry. The generalization to three dimensions reached a first climax in Born’s, Heisenberg’s, and Jordan’s famous “Three men work” (Born et al., ZS f. Physik, 1925, [6]). Green explains in [12]
34#
發(fā)表于 2025-3-27 12:46:53 | 只看該作者
35#
發(fā)表于 2025-3-27 14:09:34 | 只看該作者
36#
發(fā)表于 2025-3-27 19:02:51 | 只看該作者
37#
發(fā)表于 2025-3-27 23:33:24 | 只看該作者
Expansion of the Matrix Method,We describe the general ideas concerning the matrix method, which was further developed by Born, Heisenberg, and Jordan and extended to systems with several degrees of freedom.
38#
發(fā)表于 2025-3-28 04:05:21 | 只看該作者
Observables and Uncertainty Relations,State vectors and other matrices are introduced. We also define projection matrices for the interpretation of experiments and density matrices for the description of mixed states. Also, Heisenberg’s famous uncertainty relation is derived and interpreted.
39#
發(fā)表于 2025-3-28 07:45:09 | 只看該作者
The Harmonic Oscillator,As a first application of the matrix method, the quantum mechanical behavior of the harmonic oscillator is discussed in detail.
40#
發(fā)表于 2025-3-28 13:41:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太白县| 新野县| 齐齐哈尔市| 壶关县| 琼结县| 湘潭县| 哈尔滨市| 攀枝花市| 河北省| 新闻| 随州市| 奈曼旗| 定结县| 焦作市| 清丰县| 英超| 阳江市| 海淀区| 剑川县| 芦溪县| 保德县| 于田县| 靖西县| 石泉县| 洛川县| 迁安市| 怀集县| 成都市| 黄大仙区| 江永县| 聂拉木县| 青浦区| 始兴县| 陆川县| 琼海市| 九龙坡区| 尼勒克县| 吉安县| 千阳县| 西平县| 北海市|