找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics in Mathematics, Chemistry, and Physics; Karl E. Gustafson,William P. Reinhardt Book 1981 Plenum Press, New York 1981 Ger

[復(fù)制鏈接]
查看: 32358|回復(fù): 65
樓主
發(fā)表于 2025-3-21 17:06:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Quantum Mechanics in Mathematics, Chemistry, and Physics
編輯Karl E. Gustafson,William P. Reinhardt
視頻videohttp://file.papertrans.cn/782/781337/781337.mp4
圖書封面Titlebook: Quantum Mechanics in Mathematics, Chemistry, and Physics;  Karl E. Gustafson,William P. Reinhardt Book 1981 Plenum Press, New York 1981 Ger
出版日期Book 1981
關(guān)鍵詞Germany; Potential; astrophysics; bifurcation; chemistry; dynamical systems; mathematics; mechanics; model; p
版次1
doihttps://doi.org/10.1007/978-1-4613-3258-9
isbn_softcover978-1-4613-3260-2
isbn_ebook978-1-4613-3258-9
copyrightPlenum Press, New York 1981
The information of publication is updating

書目名稱Quantum Mechanics in Mathematics, Chemistry, and Physics影響因子(影響力)




書目名稱Quantum Mechanics in Mathematics, Chemistry, and Physics影響因子(影響力)學(xué)科排名




書目名稱Quantum Mechanics in Mathematics, Chemistry, and Physics網(wǎng)絡(luò)公開度




書目名稱Quantum Mechanics in Mathematics, Chemistry, and Physics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quantum Mechanics in Mathematics, Chemistry, and Physics被引頻次




書目名稱Quantum Mechanics in Mathematics, Chemistry, and Physics被引頻次學(xué)科排名




書目名稱Quantum Mechanics in Mathematics, Chemistry, and Physics年度引用




書目名稱Quantum Mechanics in Mathematics, Chemistry, and Physics年度引用學(xué)科排名




書目名稱Quantum Mechanics in Mathematics, Chemistry, and Physics讀者反饋




書目名稱Quantum Mechanics in Mathematics, Chemistry, and Physics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:17:32 | 只看該作者
Intramolecular Dynamics in the Quasiperiodic and Stochastic Regimes,ulation of bound-state eigenvalues, (2) classical spectra and correlation functions in the quasiperiodic and “chaotic” regimes, (3) “chaotic” behavior in quantum mechanics, and (4) applications to collisional and laser interactions.
板凳
發(fā)表于 2025-3-22 02:55:53 | 只看該作者
地板
發(fā)表于 2025-3-22 08:13:27 | 只看該作者
5#
發(fā)表于 2025-3-22 09:41:40 | 只看該作者
Classical-Quantum Correspondence in Non-Linear Systems,riate to molecular vibration. The accuracy generally decreases with increasing time; thus the classically determined Fourier transform power spectra (molecular absorption spectrum) are most accurate at low and intermediate spectral resolution, by the time-frequency uncertainty relation. Spectral ban
6#
發(fā)表于 2025-3-22 14:03:44 | 只看該作者
Real Axis Asymptotics and Estimates of Hamiltonian Resolvent Kernels,rtional to . over . secondly, this g is assumed to have an even analytic extension from [0, + ∞) to the strip |g| ≤ b for some b ∈ (0, + ∞) such that also there . for some.. For such potentials, both the usual Schrodinger Hamiltonian and the free electron state second quantized Dirac Hamiltonian
7#
發(fā)表于 2025-3-22 17:11:32 | 只看該作者
8#
發(fā)表于 2025-3-23 01:14:20 | 只看該作者
A Study of the Helmholtz Operator,or each s < -3. 2. Comparisons are made with its operation on L. spaces. The operator ImRλ maps L. (?.) into the null space of -Δ-λ. Bounds for the growth at infinity of the derivatives of ImRpf are obtained.
9#
發(fā)表于 2025-3-23 05:13:06 | 只看該作者
10#
發(fā)表于 2025-3-23 05:51:47 | 只看該作者
Intramolecular Dynamics in the Quasiperiodic and Stochastic Regimes,d, in which nonlinear dynamics is applied to problems involving molecular behavior. Four aspects are described: (1) semiclassical methods for the calculation of bound-state eigenvalues, (2) classical spectra and correlation functions in the quasiperiodic and “chaotic” regimes, (3) “chaotic” behavior
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大连市| 湖北省| 佛冈县| 恩施市| 萍乡市| 庐江县| 潼关县| 紫阳县| 迁西县| 新竹县| 高清| 和静县| 石河子市| 泸西县| 内乡县| 塔河县| 东乌| 江安县| 宜春市| 浙江省| 措美县| 舞阳县| 台南县| 建瓯市| 彝良县| 岢岚县| 洛隆县| 临城县| 砀山县| 武宁县| 焦作市| 彭阳县| 新野县| 子洲县| 漾濞| 循化| 武陟县| 自贡市| 合水县| 桃江县| 玉田县|