找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics; K. T. Hecht Textbook 2000 Springer Science+Business Media New York 2000 Dirac equation.hyperfine.mechanics.perturbation

[復(fù)制鏈接]
查看: 38601|回復(fù): 57
樓主
發(fā)表于 2025-3-21 19:32:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Quantum Mechanics
編輯K. T. Hecht
視頻videohttp://file.papertrans.cn/782/781312/781312.mp4
叢書名稱Graduate Texts in Contemporary Physics
圖書封面Titlebook: Quantum Mechanics;  K. T. Hecht Textbook 2000 Springer Science+Business Media New York 2000 Dirac equation.hyperfine.mechanics.perturbation
描述Intended for beginning graduate students, this text takes the reader from the familiar coordinate representation of quantum mechanics to the modern algebraic approach, emphsizing symmetry principles throughout. After an introduction of the basic postulates and techniques, the book discusses time-independent perturbation theory, angular momentum, identical particles, scattering theory, and time-dependent perturbation theory. It concludes with several lectures on relativistic quantum mechanics and on many-body theory
出版日期Textbook 2000
關(guān)鍵詞Dirac equation; hyperfine; mechanics; perturbation theory; quantum mechanics; quantum theory; relativistic
版次1
doihttps://doi.org/10.1007/978-1-4612-1272-0
isbn_softcover978-1-4612-7072-0
isbn_ebook978-1-4612-1272-0Series ISSN 0938-037X
issn_series 0938-037X
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

書目名稱Quantum Mechanics影響因子(影響力)




書目名稱Quantum Mechanics影響因子(影響力)學(xué)科排名




書目名稱Quantum Mechanics網(wǎng)絡(luò)公開(kāi)度




書目名稱Quantum Mechanics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Quantum Mechanics被引頻次




書目名稱Quantum Mechanics被引頻次學(xué)科排名




書目名稱Quantum Mechanics年度引用




書目名稱Quantum Mechanics年度引用學(xué)科排名




書目名稱Quantum Mechanics讀者反饋




書目名稱Quantum Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:16:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:35:32 | 只看該作者
Harmonic Oscillator CalculationsFor many calculations involving 1-D harmonic oscillator wave functions, it is useful to introduce the Bargmann transform through the kernel function., where . is a complex number. Given a square-integrable function, .(.), its Bargmann transform, .(.), is given by ., where . and the integral is over the 2-D complex .-plane; i.e., wiht .=., ..
地板
發(fā)表于 2025-3-22 04:54:24 | 只看該作者
5#
發(fā)表于 2025-3-22 11:08:39 | 只看該作者
6#
發(fā)表于 2025-3-22 14:17:30 | 只看該作者
The Vector Space Interpretation of Quantum-Mechanical SystemsSo far, we have specified the state of a quantum-mechanical system by the wave function, , i.e., by specifying the value of the scalar function, Ψ, for all values of ., ., ., at a particular time, ..
7#
發(fā)表于 2025-3-22 19:00:54 | 只看該作者
978-1-4612-7072-0Springer Science+Business Media New York 2000
8#
發(fā)表于 2025-3-22 23:24:09 | 只看該作者
Quantum Mechanics978-1-4612-1272-0Series ISSN 0938-037X
9#
發(fā)表于 2025-3-23 01:28:43 | 只看該作者
10#
發(fā)表于 2025-3-23 08:12:41 | 只看該作者
Spherical Harmonics, Orbital Angular Momentumion to construct the full set of angular functions Θ(θ) via the normalized step-down operators. Because the eigenvalue λ = λ. + 1/4 is a function of .max ≡., we will replace the index λ by the integer .. [Recall that λ = .(.max + 1) = (. + 1/2).] The full angular functions are the spherical harmonics..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武邑县| 湾仔区| 黔南| 华蓥市| 瑞金市| 双柏县| 衢州市| 芜湖市| 林西县| 毕节市| 清苑县| 五河县| 阿拉善左旗| 车致| 从化市| 玛纳斯县| 星子县| 宁阳县| 曲水县| 北辰区| 新源县| 乐都县| 澳门| 林甸县| 赤壁市| 惠州市| 漠河县| 开江县| 垣曲县| 饶平县| 虹口区| 察雅县| 浦东新区| 昭觉县| 绥芬河市| 化州市| 澄江县| 台中县| 固原市| 浪卡子县| 健康|