找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics; Symmetries Walter Greiner,Berndt Müller Textbook 1994Latest edition Springer-Verlag Berlin Heidelberg 1994 Baryon.Charmo

[復制鏈接]
樓主: Chylomicron
51#
發(fā)表于 2025-3-30 12:16:51 | 只看該作者
Mathematical Supplement: Fundamental Properties of Lie Groups,The rotation group is composed of the infinite number of operators (setting ?=1)
52#
發(fā)表于 2025-3-30 16:23:57 | 只看該作者
53#
發(fā)表于 2025-3-30 18:21:48 | 只看該作者
Mathematical Supplement,Up to now, we have seen various examples of Lie groups, especially unitary (U(.) and SU(.)) groups. Let us see if we can find some common denominator in the structure of their algebras U(.) and SU(.) (algebras are denoted by lower case letters).
54#
發(fā)表于 2025-3-31 00:28:50 | 只看該作者
Special Discrete Symmetries,In the last two chapters of this book we return to symmetries which have a general significance in quantum mechanics. We shall begin with the discrete symmetries of space inversion and time reversal.
55#
發(fā)表于 2025-3-31 04:39:43 | 只看該作者
Mathematical Excursion: Non-compact Lie Groups,Compact and non-compact Lie groups differ from each other in their essential properties (which will be discussed later), so we should investigate the group quality “compactness” more fully.
56#
發(fā)表于 2025-3-31 07:11:23 | 只看該作者
,Proof of Racah’s Theorem,We devote this last chapter to the proof of Racah’s theorem. Its usefulness and power is known to us from Sect. 3.6 and many sections thereafter. Let us first state it.
57#
發(fā)表于 2025-3-31 11:09:09 | 只看該作者
Walter Greiner,Berndt MüllerIncludes supplementary material:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
达拉特旗| 湖北省| 吉林省| 余庆县| 延长县| 延庆县| 鱼台县| 东乌珠穆沁旗| 饶平县| 荥阳市| 商水县| 宜州市| 大埔县| 文昌市| 新兴县| 晋江市| 丰县| 邯郸县| 独山县| 宝丰县| 紫阳县| 淮阳县| 长宁区| 临清市| 辽源市| 平利县| 昆山市| 洛宁县| 武陟县| 临桂县| 余庆县| 井陉县| 临朐县| 常德市| 应用必备| 绥棱县| 桓台县| 崇阳县| 衡阳市| 青龙| 连城县|