找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics; Axiomatic Approach a Tapan Kumar Das Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復(fù)制鏈接]
樓主: LANK
31#
發(fā)表于 2025-3-26 21:41:06 | 只看該作者
32#
發(fā)表于 2025-3-27 03:46:14 | 只看該作者
33#
發(fā)表于 2025-3-27 06:01:39 | 只看該作者
,Formulation of?Quantum Mechanics: Representations and Pictures,errelations. It then goes on to present different pictures for the quantum dynamics: Schr?dinger, Heisenberg and interaction pictures from different perspectives. Matrix eigen value equation has been discussed as a mathematical preliminary.
34#
發(fā)表于 2025-3-27 11:54:12 | 只看該作者
35#
發(fā)表于 2025-3-27 16:12:37 | 只看該作者
,Solution of Schr?dinger Equation: Boundary and Continuity Conditions in Coordinate Representation,localized systems. Bound, unbound and quasi-bound systems are discussed. Introducing quantum numbers, importance of symmetry in choosing coordinate system and its connection with degeneracy have also been discussed. Wave packets, Ehrenfest’s theorem and their relation with classical physics have bee
36#
發(fā)表于 2025-3-27 21:06:27 | 只看該作者
One-Dimensional Potentials,s: infinite and finite square well, harmonic oscillator well, infinite well with a delta function, quasi-bound state in a delta function barrier. Motion of a wave packet in a harmonic oscillator well is also discussed.
37#
發(fā)表于 2025-3-28 01:47:29 | 只看該作者
,Particle in?a?3-D Well,drical hole with rigid walls and the three-dimensional spherically symmetric harmonic oscillator. We stress that the choice of a coordinate system consistent with the symmetry of the system simplifies the problem.
38#
發(fā)表于 2025-3-28 03:55:41 | 只看該作者
,Scattering in? Three Dimension,eoretical analysis. These are justified by specifying the widely different scales of length, mass, etc. This discussion provides understanding of both the experimental setup and the theoretical analysis, making a convincing bridge between the two. Partial waves, phase shift, etc., for spherically sy
39#
發(fā)表于 2025-3-28 10:05:24 | 只看該作者
40#
發(fā)表于 2025-3-28 13:41:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杭州市| 彰化县| 浪卡子县| 新疆| 梨树县| 万荣县| 昭苏县| 南陵县| 土默特左旗| 玛沁县| 西青区| 凤凰县| 阿巴嘎旗| 磐石市| 红安县| 平陆县| 尖扎县| 随州市| 印江| 万荣县| 万载县| 阳谷县| 辉南县| 镇赉县| 双辽市| 米林县| 乐昌市| 临澧县| 双鸭山市| 呼图壁县| 资溪县| 山阳县| 颍上县| 全州县| 左云县| 甘南县| 如东县| 东山县| 林州市| 临桂县| 黄大仙区|