找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Measure Theory; Jan Hamhalter Book 2003 Springer Science+Business Media Dordrecht 2003 C*-algebra.Dimension.coherence.decoherence.

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:34:45 | 只看該作者
Generalized Gleason Theorem,t space extends to a linear functional on all bounded operators. The lattice of all projections on a Hilbert space . can be characterized among von Neumann projection lattices as being atomic and irreducible. Thus, Gleason Theorem covers only very special situation in this respect. Besides, it is im
32#
發(fā)表于 2025-3-27 01:47:39 | 只看該作者
33#
發(fā)表于 2025-3-27 06:11:39 | 只看該作者
34#
發(fā)表于 2025-3-27 09:43:26 | 只看該作者
Orthomorphisms of Projections,(which describes the probability structure in question), and the group of automorphisms of the algebra (which expresses the time development of the system). It is the ambition of the logico-algebraic approach to quantum mechanics, as it was articulated by Mackey [224], to recover all these aspects f
35#
發(fā)表于 2025-3-27 15:33:34 | 只看該作者
36#
發(fā)表于 2025-3-27 21:01:54 | 只看該作者
Jauch-Piron States,vesgtiated. It was seen that basic tools of classical analysis can be established for the quantum measure spaces given by ordered structures of projections. One of the most essential achievements along this line is the Gleason Theorem that guarantees the existence of quantum integral and underlines
37#
發(fā)表于 2025-3-27 23:38:05 | 只看該作者
38#
發(fā)表于 2025-3-28 04:26:41 | 只看該作者
Generalized Gleason Theorem,portant to describe . measures on projection lattices and not only completely additive ones. In this connection, a natural question arises of whether or not Gleason Theorem can be extended to finitely additive measures on projection lattices of general von Neumann algebra. This question was first posed by Mackey [224].
39#
發(fā)表于 2025-3-28 09:13:06 | 只看該作者
40#
發(fā)表于 2025-3-28 11:37:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
神池县| 英山县| 阿图什市| 林州市| 新绛县| 平阴县| 卢氏县| 山阳县| 呼图壁县| 巍山| 温泉县| 西乡县| 安乡县| 咸宁市| 杭锦后旗| 凌海市| 兴隆县| 华池县| 攀枝花市| 乐陵市| 平和县| 军事| 东兴市| 平乡县| 米林县| 青岛市| 金阳县| 涞水县| 东台市| 芒康县| 玛沁县| 新晃| 乌鲁木齐县| 新龙县| 岳普湖县| 水城县| 永宁县| 砚山县| 丁青县| 阳新县| 鹤壁市|