找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Measure Theory; Jan Hamhalter Book 2003 Springer Science+Business Media Dordrecht 2003 C*-algebra.Dimension.coherence.decoherence.

[復(fù)制鏈接]
樓主: 遮陽傘
31#
發(fā)表于 2025-3-26 23:34:45 | 只看該作者
Generalized Gleason Theorem,t space extends to a linear functional on all bounded operators. The lattice of all projections on a Hilbert space . can be characterized among von Neumann projection lattices as being atomic and irreducible. Thus, Gleason Theorem covers only very special situation in this respect. Besides, it is im
32#
發(fā)表于 2025-3-27 01:47:39 | 只看該作者
33#
發(fā)表于 2025-3-27 06:11:39 | 只看該作者
34#
發(fā)表于 2025-3-27 09:43:26 | 只看該作者
Orthomorphisms of Projections,(which describes the probability structure in question), and the group of automorphisms of the algebra (which expresses the time development of the system). It is the ambition of the logico-algebraic approach to quantum mechanics, as it was articulated by Mackey [224], to recover all these aspects f
35#
發(fā)表于 2025-3-27 15:33:34 | 只看該作者
36#
發(fā)表于 2025-3-27 21:01:54 | 只看該作者
Jauch-Piron States,vesgtiated. It was seen that basic tools of classical analysis can be established for the quantum measure spaces given by ordered structures of projections. One of the most essential achievements along this line is the Gleason Theorem that guarantees the existence of quantum integral and underlines
37#
發(fā)表于 2025-3-27 23:38:05 | 只看該作者
38#
發(fā)表于 2025-3-28 04:26:41 | 只看該作者
Generalized Gleason Theorem,portant to describe . measures on projection lattices and not only completely additive ones. In this connection, a natural question arises of whether or not Gleason Theorem can be extended to finitely additive measures on projection lattices of general von Neumann algebra. This question was first posed by Mackey [224].
39#
發(fā)表于 2025-3-28 09:13:06 | 只看該作者
40#
發(fā)表于 2025-3-28 11:37:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
娄底市| 泰和县| 亚东县| 万荣县| 呼和浩特市| 和田县| 潼关县| 陆河县| 玉山县| 淮阳县| 陕西省| 伊金霍洛旗| 大石桥市| 黔东| 如皋市| 伊宁市| 诸城市| 永靖县| 金华市| 柳州市| 普兰店市| 淳化县| 义乌市| 宜州市| 射阳县| 项城市| 湛江市| 手游| 新巴尔虎右旗| 马山县| 剑河县| 拜泉县| 壤塘县| 蒲城县| 乌苏市| 宽城| 仲巴县| 喜德县| 抚顺县| 兴隆县| 绥中县|