找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Machine Learning; Thinking and Explora Claudio Conti Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復制鏈接]
查看: 50331|回復: 47
樓主
發(fā)表于 2025-3-21 16:52:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Quantum Machine Learning
副標題Thinking and Explora
編輯Claudio Conti
視頻videohttp://file.papertrans.cn/782/781270/781270.mp4
概述Presents a new way of thinking about quantum physics by introducing machine learning from the beginning.Places coding at the forefront, with plenty of open-source examples.Shows how neural networks ca
叢書名稱Quantum Science and Technology
圖書封面Titlebook: Quantum Machine Learning; Thinking and Explora Claudio Conti Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive lic
描述This book presents a new way of thinking about quantum mechanics and machine learning by merging the two. Quantum mechanics and machine learning may seem theoretically disparate, but their link becomes clear through the density matrix operator which can be readily approximated by neural network models, permitting a formulation of quantum physics in which physical observables can be computed via neural networks. As well as demonstrating the natural affinity of quantum physics and machine learning, this viewpoint opens rich possibilities in terms of computation, efficient hardware, and scalability. One can also obtain trainable models to optimize applications and fine-tune theories, such as approximation of the ground state in many body systems, and boosting quantum circuits’ performance. The book begins with the introduction of programming tools and basic concepts of machine learning, with necessary background material from quantum mechanics and quantum information also provided. This enables the basic building blocks, neural network models for vacuum states, to be introduced. The highlights that follow include: non-classical state representations, with squeezers and beam splitters
出版日期Book 2024
關鍵詞data-driven quantum physics; neural networks for quantum mechanics; boson sampling; machine learning in
版次1
doihttps://doi.org/10.1007/978-3-031-44226-1
isbn_softcover978-3-031-44228-5
isbn_ebook978-3-031-44226-1Series ISSN 2364-9054 Series E-ISSN 2364-9062
issn_series 2364-9054
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Quantum Machine Learning影響因子(影響力)




書目名稱Quantum Machine Learning影響因子(影響力)學科排名




書目名稱Quantum Machine Learning網絡公開度




書目名稱Quantum Machine Learning網絡公開度學科排名




書目名稱Quantum Machine Learning被引頻次




書目名稱Quantum Machine Learning被引頻次學科排名




書目名稱Quantum Machine Learning年度引用




書目名稱Quantum Machine Learning年度引用學科排名




書目名稱Quantum Machine Learning讀者反饋




書目名稱Quantum Machine Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:19:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:46:23 | 只看該作者
Quantum Mechanics and Data-Driven Physics,Why quantum machine learning? Quantum mechanics and data-driven physics are similar. We describe their connections by focusing on their mathematical paradigms. We introduce quantum feature maps, quantum kernels, and examples of quantum classifiers. We discuss the basics of kernel methods with coding examples.
地板
發(fā)表于 2025-3-22 05:19:05 | 只看該作者
Kernelizing Quantum Mechanics,We show how to use quantum states, as coherent and squeezed states for a kernel machine.
5#
發(fā)表于 2025-3-22 09:18:53 | 只看該作者
Qubit Maps,We consider quantum feature mapping in qubit states with entanglement. We introduce tensor notations for qubits in .. We review an experiment with IBM quantum computers with memristors. We deepen the mathematical aspects of quantum feature maps and support vector machines.
6#
發(fā)表于 2025-3-22 16:37:50 | 只看該作者
One-Qubit Transverse-Field Ising Model and Variational Quantum Algorithms,We give a first introduction to combinatorial optimization with the Ising model and its quantum counterpart. We start investigating the basics of the transverse-field Ising model in the case of one qubit. We give an example of a neural network variational ansatz for the ground state.
7#
發(fā)表于 2025-3-22 18:06:17 | 只看該作者
8#
發(fā)表于 2025-3-22 22:46:50 | 只看該作者
Variational Algorithms, Quantum Approximate Optimization Algorithm, and Neural Network Quantum StatWe describe different variational ansatzes and study entanglement in the ground state of the two-qubit transverse-field Ising model.
9#
發(fā)表于 2025-3-23 02:39:49 | 只看該作者
10#
發(fā)表于 2025-3-23 07:18:20 | 只看該作者
Gaussian Boson Sampling,We introduce the fundamental models for Gaussian boson sampling and the link with the computation of the Hafnian. We show how to compute and train boson sampling patterns by machine learning.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 04:02
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
房山区| 平度市| 阳谷县| 家居| 西乌珠穆沁旗| 佛坪县| 彭山县| 论坛| 利川市| 永善县| 贵定县| 大洼县| 潜山县| 西丰县| 弥渡县| 鹤峰县| 宁陵县| 沾化县| 新晃| 宜丰县| 昆山市| 澳门| 西安市| 会泽县| 金昌市| 禹城市| 新绛县| 枣阳市| 长子县| 荣昌县| 玉溪市| 济阳县| 长葛市| 肇源县| 新营市| 孝感市| 松潘县| 太谷县| 阜南县| 遂宁市| 宁武县|