找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Lie Theory; A Multilinear Approa Vladislav Kharchenko Book 2015 Springer International Publishing Switzerland 2015 17B37,20G42,16T2

[復(fù)制鏈接]
樓主: Harrison
21#
發(fā)表于 2025-3-25 04:23:54 | 只看該作者
Quantizations of Kac-Moody Algebras,cations in construction and different notations, so it is often unclear whether the results of one work may be applied to the construction of another. Nevertheless all of the constructions are character Hopf algebras. In view of the fact that the number and degrees of relations in all of the constru
22#
發(fā)表于 2025-3-25 11:30:01 | 只看該作者
23#
發(fā)表于 2025-3-25 13:48:26 | 只看該作者
Braided Hopf Algebras,space of a given braided space .. Then we define a Nichols algebra . as a subalgebra generated by . in ..(. ) and provide some characterizations of it. Finally we adopt the Radford biproduct and the Majid bozonization to character Hopf algebras. All calculations are done in the braid monoid (not in
24#
發(fā)表于 2025-3-25 18:57:01 | 只看該作者
Algebra of Primitive Nonassociative Polynomials, the skew-primitive polynomials as operations for quantum Lie theory in Chaps.?. and?5. Many of the well-known generalizations of Lie algebras involve only one or two operations. For instance, Malcev algebras have one binary bracket; Lie triple systems have one ternary bracket; Bol and Lie-Yamaguti
25#
發(fā)表于 2025-3-25 22:51:14 | 只看該作者
0075-8434 over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary “quantum” Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW
26#
發(fā)表于 2025-3-26 01:10:37 | 只看該作者
27#
發(fā)表于 2025-3-26 05:04:02 | 只看該作者
28#
發(fā)表于 2025-3-26 11:39:38 | 只看該作者
,Poincaré-Birkhoff-Witt Basis,group . of all group-like elements is commutative and . is generated over .?[.] by skew-primitive semi-invariants, whereas a well-ordered subset . is a set of PBW generators of . if there exists a function . called the height function, such that the set of all products . where . is a basis of ..?
29#
發(fā)表于 2025-3-26 12:40:23 | 只看該作者
978-3-319-22703-0Springer International Publishing Switzerland 2015
30#
發(fā)表于 2025-3-26 18:24:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姚安县| 佳木斯市| 获嘉县| 阿坝县| 天水市| 海原县| 双牌县| 乐亭县| 老河口市| 台南县| 瑞昌市| 荥阳市| 凤山县| 库车县| 宁武县| 黄浦区| 钟山县| 柘荣县| 巫溪县| 吉木萨尔县| 靖西县| 耒阳市| 信阳市| 鄢陵县| 南平市| 彭州市| 安吉县| 长治县| 绥德县| 皋兰县| 海口市| 安徽省| 黄大仙区| 乳山市| 武强县| 江安县| 石林| 黑河市| 思茅市| 江油市| 云林县|