找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Isometry Groups; Debashish Goswami,Jyotishman Bhowmick Book 2016 Springer (India) Pvt. Ltd 2016 Compact Quantum Group.Equivariant

[復(fù)制鏈接]
樓主: 空隙
21#
發(fā)表于 2025-3-25 07:14:52 | 只看該作者
22#
發(fā)表于 2025-3-25 09:26:14 | 只看該作者
An Example of Physical Interest,me generalities on real . algebras, followed by a brief discussion in the finite noncommutative space of the Connes-Chamseddine model. Then we compute the quantum isometry group of the corresponding spectral triple and also discuss some physical significance of our results.
23#
發(fā)表于 2025-3-25 14:08:22 | 只看該作者
More Examples and Open Questions,eber as well as some Drinfeld-Jimbo quantum groups. We also give the outlines of other approaches to quantum isometry groups, such as the framework of orthogonal filtrations due to Banica, Skalski and de Chanvalon, affine quantum isometry groups in the sense of Banica and quantum isometry groups of
24#
發(fā)表于 2025-3-25 17:55:58 | 只看該作者
25#
發(fā)表于 2025-3-25 20:49:59 | 只看該作者
More Examples and Open Questions, orthogonal filtrations due to Banica, Skalski and de Chanvalon, affine quantum isometry groups in the sense of Banica and quantum isometry groups of compact metric spaces due to Banica, Goswami, Sabbe and Quaegebeur. We mention several open questions in this context.
26#
發(fā)表于 2025-3-26 04:13:21 | 只看該作者
2363-6149 d quantum groups.Provides an up-to-date overview and future .This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the “quantum isometry group”, highlighting the interaction of nonc
27#
發(fā)表于 2025-3-26 04:43:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:39:26 | 只看該作者
Classical and Noncommutative Geometry,tative space of forms and the Laplacian in this set up. The last section of this chapter deals with the quantum group equivariance in noncommutative geometry where we discuss some natural examples of equivariant spectral triples on the Podles’ spheres.
29#
發(fā)表于 2025-3-26 12:50:51 | 只看該作者
Definition and Existence of Quantum Isometry Groups,real structure) preserving isometries. Sufficient conditions under which the action of the quantum isometry group keeps the . algebra invariant and is a . action are given. We also mention some sufficient conditions for the existence of the quantum group of orientation preserving isometries without fixing a choice of the ‘volume-form’.
30#
發(fā)表于 2025-3-26 19:12:20 | 只看該作者
Infosys Science Foundation Serieshttp://image.papertrans.cn/q/image/781260.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克山县| 寻乌县| 彭泽县| 岚皋县| 南城县| 厦门市| 桃江县| 新营市| 广水市| 武隆县| 弥勒县| 东光县| 隆化县| 青龙| 合水县| 康保县| 华坪县| 九江县| 无棣县| 永和县| 林芝县| 南康市| 紫阳县| 集贤县| 钟祥市| 沧源| 黎川县| 瑞丽市| 鄂托克前旗| 阳高县| 竹溪县| 弥渡县| 馆陶县| 锡林郭勒盟| 德清县| 巴彦县| 江陵县| 永安市| 武乡县| 石家庄市| 张北县|