找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Isometry Groups; Debashish Goswami,Jyotishman Bhowmick Book 2016 Springer (India) Pvt. Ltd 2016 Compact Quantum Group.Equivariant

[復(fù)制鏈接]
樓主: 空隙
21#
發(fā)表于 2025-3-25 07:14:52 | 只看該作者
22#
發(fā)表于 2025-3-25 09:26:14 | 只看該作者
An Example of Physical Interest,me generalities on real . algebras, followed by a brief discussion in the finite noncommutative space of the Connes-Chamseddine model. Then we compute the quantum isometry group of the corresponding spectral triple and also discuss some physical significance of our results.
23#
發(fā)表于 2025-3-25 14:08:22 | 只看該作者
More Examples and Open Questions,eber as well as some Drinfeld-Jimbo quantum groups. We also give the outlines of other approaches to quantum isometry groups, such as the framework of orthogonal filtrations due to Banica, Skalski and de Chanvalon, affine quantum isometry groups in the sense of Banica and quantum isometry groups of
24#
發(fā)表于 2025-3-25 17:55:58 | 只看該作者
25#
發(fā)表于 2025-3-25 20:49:59 | 只看該作者
More Examples and Open Questions, orthogonal filtrations due to Banica, Skalski and de Chanvalon, affine quantum isometry groups in the sense of Banica and quantum isometry groups of compact metric spaces due to Banica, Goswami, Sabbe and Quaegebeur. We mention several open questions in this context.
26#
發(fā)表于 2025-3-26 04:13:21 | 只看該作者
2363-6149 d quantum groups.Provides an up-to-date overview and future .This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the “quantum isometry group”, highlighting the interaction of nonc
27#
發(fā)表于 2025-3-26 04:43:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:39:26 | 只看該作者
Classical and Noncommutative Geometry,tative space of forms and the Laplacian in this set up. The last section of this chapter deals with the quantum group equivariance in noncommutative geometry where we discuss some natural examples of equivariant spectral triples on the Podles’ spheres.
29#
發(fā)表于 2025-3-26 12:50:51 | 只看該作者
Definition and Existence of Quantum Isometry Groups,real structure) preserving isometries. Sufficient conditions under which the action of the quantum isometry group keeps the . algebra invariant and is a . action are given. We also mention some sufficient conditions for the existence of the quantum group of orientation preserving isometries without fixing a choice of the ‘volume-form’.
30#
發(fā)表于 2025-3-26 19:12:20 | 只看該作者
Infosys Science Foundation Serieshttp://image.papertrans.cn/q/image/781260.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
裕民县| 上犹县| 英吉沙县| 白山市| 上饶县| 玛沁县| 通化县| 乐东| 公主岭市| 海门市| 晋中市| 大渡口区| 普宁市| 什邡市| 兰溪市| 灵宝市| 凤庆县| 孟连| 宣城市| 正安县| 忻州市| 慈利县| 黑山县| 托克逊县| 江山市| 沁阳市| 五家渠市| 通化县| 铜鼓县| 克拉玛依市| 库车县| 涡阳县| 汕头市| 固原市| 沛县| 瑞金市| 定陶县| 宾川县| 房产| 隆德县| 姚安县|