找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Isometry Groups; Debashish Goswami,Jyotishman Bhowmick Book 2016 Springer (India) Pvt. Ltd 2016 Compact Quantum Group.Equivariant

[復(fù)制鏈接]
樓主: 空隙
21#
發(fā)表于 2025-3-25 07:14:52 | 只看該作者
22#
發(fā)表于 2025-3-25 09:26:14 | 只看該作者
An Example of Physical Interest,me generalities on real . algebras, followed by a brief discussion in the finite noncommutative space of the Connes-Chamseddine model. Then we compute the quantum isometry group of the corresponding spectral triple and also discuss some physical significance of our results.
23#
發(fā)表于 2025-3-25 14:08:22 | 只看該作者
More Examples and Open Questions,eber as well as some Drinfeld-Jimbo quantum groups. We also give the outlines of other approaches to quantum isometry groups, such as the framework of orthogonal filtrations due to Banica, Skalski and de Chanvalon, affine quantum isometry groups in the sense of Banica and quantum isometry groups of
24#
發(fā)表于 2025-3-25 17:55:58 | 只看該作者
25#
發(fā)表于 2025-3-25 20:49:59 | 只看該作者
More Examples and Open Questions, orthogonal filtrations due to Banica, Skalski and de Chanvalon, affine quantum isometry groups in the sense of Banica and quantum isometry groups of compact metric spaces due to Banica, Goswami, Sabbe and Quaegebeur. We mention several open questions in this context.
26#
發(fā)表于 2025-3-26 04:13:21 | 只看該作者
2363-6149 d quantum groups.Provides an up-to-date overview and future .This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the “quantum isometry group”, highlighting the interaction of nonc
27#
發(fā)表于 2025-3-26 04:43:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:39:26 | 只看該作者
Classical and Noncommutative Geometry,tative space of forms and the Laplacian in this set up. The last section of this chapter deals with the quantum group equivariance in noncommutative geometry where we discuss some natural examples of equivariant spectral triples on the Podles’ spheres.
29#
發(fā)表于 2025-3-26 12:50:51 | 只看該作者
Definition and Existence of Quantum Isometry Groups,real structure) preserving isometries. Sufficient conditions under which the action of the quantum isometry group keeps the . algebra invariant and is a . action are given. We also mention some sufficient conditions for the existence of the quantum group of orientation preserving isometries without fixing a choice of the ‘volume-form’.
30#
發(fā)表于 2025-3-26 19:12:20 | 只看該作者
Infosys Science Foundation Serieshttp://image.papertrans.cn/q/image/781260.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣州市| 扎兰屯市| 和田市| 图们市| 垫江县| 汕尾市| 鲁甸县| 潜江市| 翼城县| 南通市| 景宁| 宁乡县| 都安| 福州市| 高雄县| 平度市| 中宁县| 夏津县| 泊头市| 花垣县| 晋中市| 江北区| 武乡县| 临邑县| 遵义县| 忻州市| 衡阳县| 清镇市| 托克逊县| 桓台县| 临邑县| 淅川县| 德钦县| 紫云| 墨江| 西安市| 泾阳县| 怀柔区| 呼伦贝尔市| 新民市| 绥化市|