找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Information Processing with Finite Resources; Mathematical Foundat Marco Tomamichel Book 2016 The Author(s) 2016 Entanglement.Infor

[復(fù)制鏈接]
樓主: 喜悅
11#
發(fā)表于 2025-3-23 11:38:24 | 只看該作者
12#
發(fā)表于 2025-3-23 14:21:07 | 只看該作者
13#
發(fā)表于 2025-3-23 19:38:15 | 只看該作者
Selected Applications,, in particular the duality relation. Finally, smooth entropies were originally invented in the context of cryptography, and the Leftover Hashing Lemma reveals why this definition has proven so useful.
14#
發(fā)表于 2025-3-23 22:18:23 | 只看該作者
15#
發(fā)表于 2025-3-24 04:00:51 | 只看該作者
16#
發(fā)表于 2025-3-24 08:08:58 | 只看該作者
Modeling Quantum Information,physical systems are ultimately governed by the laws of quantum mechanics. In this chapter we quickly review the relevant mathematical foundations of quantum theory and introduce notational conventions that will be used throughout the book.
17#
發(fā)表于 2025-3-24 11:31:14 | 只看該作者
18#
發(fā)表于 2025-3-24 15:25:31 | 只看該作者
19#
發(fā)表于 2025-3-24 19:04:11 | 只看該作者
,Conditional Rényi Entropy,stem. The system as well as the side information can be either classical or a quantum. The goal in this chapter is to define conditional Rényi entropies that are operationally significant measures of this uncertainty, and to explore their properties. Unconditional entropies are then simply a special
20#
發(fā)表于 2025-3-25 02:38:07 | 只看該作者
Smooth Entropy Calculus,lications it suffices to consider just two smooth Rényi entropies: the smooth min-entropy acts as a representative of all conditional Rényi entropies with ., whereas the smooth max-entropy acts as a representative for all Rényi entropies with .. These two entropies have particularly nice properties
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
花莲市| 靖安县| 西宁市| 温泉县| 金坛市| 宝丰县| 陇西县| 黔西| 敦化市| 洪江市| 凌云县| 吴川市| 华安县| 铜陵市| 禹城市| 卓资县| 尚义县| 翁源县| 太仆寺旗| 临泽县| 六安市| 贵阳市| 蓝山县| 怀仁县| 永善县| 高邮市| 六盘水市| 宁武县| 东源县| 赫章县| 莎车县| 阳西县| 安顺市| 洛隆县| 吴桥县| 垦利县| 江门市| 垫江县| 华池县| 瓮安县| 伽师县|