找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Information Processing; Theory and Implement János A. Bergou,Mark Hillery,Mark Saffman Textbook 2021Latest edition Springer Nature

[復(fù)制鏈接]
樓主: protocol
11#
發(fā)表于 2025-3-23 13:17:16 | 只看該作者
12#
發(fā)表于 2025-3-23 14:09:56 | 只看該作者
Quantum Measurement Theory,valent to learning what final state the system is in at the output since information is encoded in the state. In fact, information is the state itself. Since finding out the state of a system can be done only by performing measurements on it, we need a thorough understanding of the quantum theory (a
13#
發(fā)表于 2025-3-23 19:06:02 | 只看該作者
Quantum Cryptography,f quantum mechanics are only a short step away from spectacular practical applications. We have already seen two such applications: Dense coding and teleportation. In this chapter we shall deal with what is arguably the most successful area of all of quantum information and quantum computing: Quantu
14#
發(fā)表于 2025-3-24 01:41:48 | 只看該作者
15#
發(fā)表于 2025-3-24 04:10:28 | 只看該作者
Decoherence and Quantum Error Correction,not, e.g. atoms couple to the electromagnetic field and spins couple to other spins via dipole-dipole interactions. These unwanted couplings can cause errors, and we need to protect quantum information against these errors.
16#
發(fā)表于 2025-3-24 09:23:09 | 只看該作者
,The Stabilizer Formalism and the Gottesman–Knill Theorem,y for a different reason; it allows us to prove the Gottesman–Knill theorem. That theorem serves as a useful warning. Just because you are manipulating qubits with quantum gates does not guarantee that what you are doing cannot be simulated efficiently on a classical computer.
17#
發(fā)表于 2025-3-24 12:33:47 | 只看該作者
18#
發(fā)表于 2025-3-24 15:32:19 | 只看該作者
19#
發(fā)表于 2025-3-24 22:43:35 | 只看該作者
Atomic Qubits,more than two energy levels it is possible to prepare, measure, and control a two-dimensional subspace of atomic states using optical techniques that have been developed over the last 50 years. The most precise instrument developed by humankind, the optical atomic clock, exploits the remarkable cohe
20#
發(fā)表于 2025-3-25 00:14:37 | 只看該作者
Solid State Qubits,ese approaches do not involve optics or lasers and are therefore closer to the technologies that are widely used today for information processing. On the other hand maintaining and controlling quantum coherence in a solid state material is difficult at room temperatures so the approaches to be discu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨玉县| 乌拉特前旗| 田东县| 盐边县| 双辽市| 改则县| 库伦旗| 巧家县| 东莞市| 理塘县| 称多县| 吉首市| 苍山县| 修武县| 武夷山市| 天峨县| 铜山县| 北宁市| 泾川县| 壤塘县| 聊城市| 浙江省| 昌江| 昌邑市| 成安县| 焦作市| 嘉禾县| 宜良县| 德阳市| 临泽县| 章丘市| 罗甸县| 牙克石市| 那坡县| 什邡市| 长顺县| 石景山区| 怀远县| 喜德县| 灵石县| 沛县|