找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Groups; Proceedings of the 8 H. -D. Doebner,J. -D. Hennig Conference proceedings 1990 Springer-Verlag Berlin Heidelberg 1990 algebr

[復制鏈接]
樓主: EFFCT
21#
發(fā)表于 2025-3-25 07:00:33 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:57 | 只看該作者
23#
發(fā)表于 2025-3-25 14:28:57 | 只看該作者
24#
發(fā)表于 2025-3-25 17:53:03 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:19 | 只看該作者
Extremal projectors for quantized kac-moody superalgebras and some of their applications,one to extend the concept of quantized Kac-Moody algebras to the case of Kac-Moody superalgebras. A q-analogue of the Cartan-Weyl basis is introduced, which has properties similar to the Cartan-Weyl basis of the Kac-Moody (super) algebras. Explicit expressions of the extremal projectors for all quan
26#
發(fā)表于 2025-3-26 03:45:17 | 只看該作者
27#
發(fā)表于 2025-3-26 06:31:20 | 只看該作者
28#
發(fā)表于 2025-3-26 10:08:53 | 只看該作者
Quantum groups as symmetries of chiral conformal algebras, chiral conformal model is introduced in such a way that the overall (product) representation of the braid group is trivialized. As an introduction we review (in Secs.1 and 2) basic facts about 2-dimensional conformal QFT and about the quantum enveloping algebra .. - ..(sl(2)) and its finite dimensi
29#
發(fā)表于 2025-3-26 16:04:39 | 只看該作者
Quantum symmetry associated with braid group statistics,standing of the symmetry structure dual to braid group statistics is only at its beginning. We use the duality to identify a “first approximation” to this structure and the corresponding algebra of charged fields.
30#
發(fā)表于 2025-3-26 19:20:57 | 只看該作者
Anomalies from the phenomenological and geometrical points of view,gebraic approach, and, in the end and more detailed, the geometric approach. In particular, the topological approach of the Atiyah-Singer is extended in a way which allows the treatment of all chiral anomalies within the geometric (equivariant) point of view.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
礼泉县| 吉木乃县| 阳信县| 图片| 吉木乃县| 鹰潭市| 株洲市| 怀柔区| 吉林市| 墨脱县| 通辽市| 肇州县| 桂阳县| 永靖县| 塔城市| 曲麻莱县| 军事| 中西区| 盈江县| 子洲县| 轮台县| 天等县| 资阳市| 博罗县| 遂平县| 增城市| 尉氏县| 绥芬河市| 锦州市| 叶城县| 七台河市| 蓬溪县| 丹阳市| 涿鹿县| 揭东县| 吴忠市| 清徐县| 峡江县| 札达县| 浮山县| 会同县|