找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Groups; Proceedings of the 8 H. -D. Doebner,J. -D. Hennig Conference proceedings 1990 Springer-Verlag Berlin Heidelberg 1990 algebr

[復制鏈接]
樓主: EFFCT
21#
發(fā)表于 2025-3-25 07:00:33 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:57 | 只看該作者
23#
發(fā)表于 2025-3-25 14:28:57 | 只看該作者
24#
發(fā)表于 2025-3-25 17:53:03 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:19 | 只看該作者
Extremal projectors for quantized kac-moody superalgebras and some of their applications,one to extend the concept of quantized Kac-Moody algebras to the case of Kac-Moody superalgebras. A q-analogue of the Cartan-Weyl basis is introduced, which has properties similar to the Cartan-Weyl basis of the Kac-Moody (super) algebras. Explicit expressions of the extremal projectors for all quan
26#
發(fā)表于 2025-3-26 03:45:17 | 只看該作者
27#
發(fā)表于 2025-3-26 06:31:20 | 只看該作者
28#
發(fā)表于 2025-3-26 10:08:53 | 只看該作者
Quantum groups as symmetries of chiral conformal algebras, chiral conformal model is introduced in such a way that the overall (product) representation of the braid group is trivialized. As an introduction we review (in Secs.1 and 2) basic facts about 2-dimensional conformal QFT and about the quantum enveloping algebra .. - ..(sl(2)) and its finite dimensi
29#
發(fā)表于 2025-3-26 16:04:39 | 只看該作者
Quantum symmetry associated with braid group statistics,standing of the symmetry structure dual to braid group statistics is only at its beginning. We use the duality to identify a “first approximation” to this structure and the corresponding algebra of charged fields.
30#
發(fā)表于 2025-3-26 19:20:57 | 只看該作者
Anomalies from the phenomenological and geometrical points of view,gebraic approach, and, in the end and more detailed, the geometric approach. In particular, the topological approach of the Atiyah-Singer is extended in a way which allows the treatment of all chiral anomalies within the geometric (equivariant) point of view.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丰都县| 黄浦区| 宜丰县| 铁岭县| 天台县| 咸宁市| 富平县| 合江县| 青田县| 台南市| 亚东县| 汕头市| 石楼县| 凯里市| 嘉定区| 百色市| 涟水县| 临潭县| 肥东县| 贵阳市| 通州市| 南雄市| 吉木乃县| 葫芦岛市| 西昌市| 津南区| 扶余县| 宣恩县| 射洪县| 宜兰县| 琼中| 长春市| 永修县| 中江县| 泾阳县| 馆陶县| 铜川市| 石屏县| 临夏市| 两当县| 平利县|