找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Gravity, Quantum Cosmology and Lorentzian Geometries; Giampiero Esposito Book 19921st edition Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: 添加劑
31#
發(fā)表于 2025-3-27 00:15:15 | 只看該作者
32#
發(fā)表于 2025-3-27 04:16:20 | 只看該作者
33#
發(fā)表于 2025-3-27 05:34:33 | 只看該作者
34#
發(fā)表于 2025-3-27 12:07:45 | 只看該作者
35#
發(fā)表于 2025-3-27 14:27:09 | 只看該作者
Global Boundary Conditions and ζ(0) Value for the Massless Spin-1/2 Fieldre boundary. The corresponding ζ(0) value is obtained studying the Laplace transform of the heat equation for the squared Dirac operator, and finally deriving the asymptotic expansion of the inverse Laplace transform, i.e. the heat kernel. This squared operator arises from the study of the coupled s
36#
發(fā)表于 2025-3-27 20:10:39 | 只看該作者
Choice of Boundary Conditions in One-Loop Quantum Cosmologythe PDF .(0). Namely, the PDF contribution to the prefactor due to the spin-3/2 field is proportional to .. (. being the three-sphere radius), which does not cancel .. due to the gravitational field subject to Dirichlet boundary conditions for the perturbed three-metric..We therefore study possible
37#
發(fā)表于 2025-3-28 00:06:49 | 只看該作者
Ghost Fields and Gauge Modes in One-Loop Quantum Cosmology when expressed in terms of its physical degrees of freedom, the transverse-traceless modes. One can formally show that a suitable measure exists such that the gauge-invariant form of the path integral for the ground-state wave function is equal to the one expressed in terms of the physical degrees
38#
發(fā)表于 2025-3-28 02:43:22 | 只看該作者
Local Boundary Conditions for the Weyl Spinoradd to the linearized Einstein action such that the linearized Einstein equations follow from requiring the action to be stationary. Thus we conclude that fixing the linearized electric curvature on .. does not lead to a well-posed classical boundary-value problem. This implies that the correspondin
39#
發(fā)表于 2025-3-28 08:02:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:19:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合川市| 酉阳| 成安县| 普兰店市| 兰考县| 屯昌县| 淮阳县| 丰顺县| 珠海市| 荆州市| 枞阳县| 稷山县| 武定县| 嘉兴市| 通海县| 池州市| 中卫市| 临泉县| 丹凤县| 绥棱县| 黄陵县| 兴化市| 冕宁县| 河北省| 惠安县| 柞水县| 汉沽区| 昭平县| 南投市| 通化市| 永泰县| 马鞍山市| 元阳县| 方山县| 连城县| 峡江县| 象州县| 大埔县| 京山县| 钟祥市| 建宁县|