找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Gravity, Quantum Cosmology and Lorentzian Geometries; Giampiero Esposito Book 19921st edition Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: 添加劑
31#
發(fā)表于 2025-3-27 00:15:15 | 只看該作者
32#
發(fā)表于 2025-3-27 04:16:20 | 只看該作者
33#
發(fā)表于 2025-3-27 05:34:33 | 只看該作者
34#
發(fā)表于 2025-3-27 12:07:45 | 只看該作者
35#
發(fā)表于 2025-3-27 14:27:09 | 只看該作者
Global Boundary Conditions and ζ(0) Value for the Massless Spin-1/2 Fieldre boundary. The corresponding ζ(0) value is obtained studying the Laplace transform of the heat equation for the squared Dirac operator, and finally deriving the asymptotic expansion of the inverse Laplace transform, i.e. the heat kernel. This squared operator arises from the study of the coupled s
36#
發(fā)表于 2025-3-27 20:10:39 | 只看該作者
Choice of Boundary Conditions in One-Loop Quantum Cosmologythe PDF .(0). Namely, the PDF contribution to the prefactor due to the spin-3/2 field is proportional to .. (. being the three-sphere radius), which does not cancel .. due to the gravitational field subject to Dirichlet boundary conditions for the perturbed three-metric..We therefore study possible
37#
發(fā)表于 2025-3-28 00:06:49 | 只看該作者
Ghost Fields and Gauge Modes in One-Loop Quantum Cosmology when expressed in terms of its physical degrees of freedom, the transverse-traceless modes. One can formally show that a suitable measure exists such that the gauge-invariant form of the path integral for the ground-state wave function is equal to the one expressed in terms of the physical degrees
38#
發(fā)表于 2025-3-28 02:43:22 | 只看該作者
Local Boundary Conditions for the Weyl Spinoradd to the linearized Einstein action such that the linearized Einstein equations follow from requiring the action to be stationary. Thus we conclude that fixing the linearized electric curvature on .. does not lead to a well-posed classical boundary-value problem. This implies that the correspondin
39#
發(fā)表于 2025-3-28 08:02:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:19:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙里县| 凌源市| 通城县| 安宁市| 榆树市| 北流市| 开阳县| 图片| 海晏县| 保德县| 灵丘县| 枣强县| 河东区| 定襄县| 鹤峰县| 台安县| 贵德县| 电白县| 衢州市| 敖汉旗| 石泉县| 龙江县| 云阳县| 五常市| 灵台县| 栖霞市| 古浪县| 维西| 广德县| 大渡口区| 灵台县| 青河县| 沙田区| 元朗区| 内丘县| 石家庄市| 牙克石市| 徐闻县| 上思县| 凌云县| 儋州市|