找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Gravity, Quantum Cosmology and Lorentzian Geometries; Giampiero Esposito Book 19921st edition Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: 添加劑
31#
發(fā)表于 2025-3-27 00:15:15 | 只看該作者
32#
發(fā)表于 2025-3-27 04:16:20 | 只看該作者
33#
發(fā)表于 2025-3-27 05:34:33 | 只看該作者
34#
發(fā)表于 2025-3-27 12:07:45 | 只看該作者
35#
發(fā)表于 2025-3-27 14:27:09 | 只看該作者
Global Boundary Conditions and ζ(0) Value for the Massless Spin-1/2 Fieldre boundary. The corresponding ζ(0) value is obtained studying the Laplace transform of the heat equation for the squared Dirac operator, and finally deriving the asymptotic expansion of the inverse Laplace transform, i.e. the heat kernel. This squared operator arises from the study of the coupled s
36#
發(fā)表于 2025-3-27 20:10:39 | 只看該作者
Choice of Boundary Conditions in One-Loop Quantum Cosmologythe PDF .(0). Namely, the PDF contribution to the prefactor due to the spin-3/2 field is proportional to .. (. being the three-sphere radius), which does not cancel .. due to the gravitational field subject to Dirichlet boundary conditions for the perturbed three-metric..We therefore study possible
37#
發(fā)表于 2025-3-28 00:06:49 | 只看該作者
Ghost Fields and Gauge Modes in One-Loop Quantum Cosmology when expressed in terms of its physical degrees of freedom, the transverse-traceless modes. One can formally show that a suitable measure exists such that the gauge-invariant form of the path integral for the ground-state wave function is equal to the one expressed in terms of the physical degrees
38#
發(fā)表于 2025-3-28 02:43:22 | 只看該作者
Local Boundary Conditions for the Weyl Spinoradd to the linearized Einstein action such that the linearized Einstein equations follow from requiring the action to be stationary. Thus we conclude that fixing the linearized electric curvature on .. does not lead to a well-posed classical boundary-value problem. This implies that the correspondin
39#
發(fā)表于 2025-3-28 08:02:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:19:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
正定县| 海门市| 凭祥市| 颍上县| 临澧县| 湖北省| 桂阳县| 武宁县| 吉木萨尔县| 张家界市| 龙口市| 长岭县| 深水埗区| 边坝县| 凤庆县| 阜阳市| 江安县| 惠安县| 佛教| 遂平县| 马鞍山市| 保定市| 凯里市| 巴彦淖尔市| 岑巩县| 顺平县| 汉沽区| 新沂市| 石阡县| 张家川| 江阴市| 南陵县| 枝江市| 六枝特区| 舒城县| 永定县| 安康市| 芮城县| 鄱阳县| 从江县| 平武县|