找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Gravity, Quantum Cosmology and Lorentzian Geometries; Giampiero Esposito,Secod Corrected Book 1994Latest edition Springer-Verlag B

[復(fù)制鏈接]
樓主: Braggart
11#
發(fā)表于 2025-3-23 10:55:33 | 只看該作者
Ghost Fields and Gauge Modes in One-Loop Quantum Cosmologyed phase-space method of Batalin, Fradkin and Vilkovisky to the spin-1 field, which is described by a constrained Hamiltonian system with first-class constraints. The charge . and the gauge-fixed action are derived. The Lorentzian path integral is restricted to the trajectories of the extended phase
12#
發(fā)表于 2025-3-23 16:53:28 | 只看該作者
13#
發(fā)表于 2025-3-23 18:15:11 | 只看該作者
14#
發(fā)表于 2025-3-23 23:09:08 | 只看該作者
15#
發(fā)表于 2025-3-24 03:53:06 | 只看該作者
Lorentzian Geometry, , Theories and Singularities in Cosmologyrelations between topology and curvature. We then define spinor structures in general relativity, and the conditions for their existence are discussed. The causality conditions are studied through an analysis of strong causality, stable causality and global hyperbolicity. In looking at the asymptoti
16#
發(fā)表于 2025-3-24 08:20:10 | 只看該作者
17#
發(fā)表于 2025-3-24 14:02:40 | 只看該作者
18#
發(fā)表于 2025-3-24 16:03:36 | 只看該作者
Conclusions (2) theory of SL(2,C) spinors, SU(2) spinors and the Dirac operator; (3) twistor theory in flat space and complex manifolds; (4) self-adjointness theory; (5) constrained Hamiltonian systems and path integrals in quantum field theory; (6) spinor, causal, asymptotic and Hamiltonian structure of space-time; (7) singularity theory in cosmology.
19#
發(fā)表于 2025-3-24 23:01:55 | 只看該作者
20#
發(fā)表于 2025-3-25 02:35:58 | 只看該作者
the ISO 14040 Life Cycle Impact Assessment (LCIA) methodology. The paper discusses the approach to adapt the selection of impact categories and category indicators, assignment of life cycle inventory results, and calculation of category indicator results from LCIA for risk impact assessment. Issues
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏东县| 尉氏县| 西峡县| 澄城县| 蒙城县| 玉溪市| 连南| 汉中市| 册亨县| 同心县| 望谟县| 泗阳县| 怀柔区| 台南县| 凤凰县| 宣化县| 银川市| 鹰潭市| 彰化县| 东阿县| 台湾省| 上高县| 榕江县| 保定市| 锦州市| 陕西省| 和硕县| 安远县| 六枝特区| 汝城县| 伊金霍洛旗| 古田县| 桑日县| 宣化县| 福清市| 随州市| 锦屏县| 甘德县| 石嘴山市| 故城县| 习水县|