找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Geometry; A Framework for Quan Eduard Prugove?ki Book 1992 Springer Science+Business Media Dordrecht 1992 Minkowski space.cosmology

[復(fù)制鏈接]
樓主: Helmet
11#
發(fā)表于 2025-3-23 13:46:30 | 只看該作者
12#
發(fā)表于 2025-3-23 16:08:01 | 只看該作者
13#
發(fā)表于 2025-3-23 18:27:59 | 只看該作者
14#
發(fā)表于 2025-3-23 22:35:39 | 只看該作者
Historical and Epistemological Perspectives on Developments in Relativity and Quantum Theory, the experimentalists’ conscious or subconscious biases. Hence, the outcome is prone to various kinds of errors, ranging from systematic ones, due to the faulty design of apparatus or erroneous analysis of the raw data, to the subtle ones, due to misinterpretation or unwarranted extrapolation.
15#
發(fā)表于 2025-3-24 05:21:23 | 只看該作者
16#
發(fā)表于 2025-3-24 10:17:39 | 只看該作者
Relativistic Quantum Geometries for Spin-0 Massive Fields,ed in Sec. 7.6. Hence, the last word on this subject has to go to the acknowledged founder of relativistic quantum field theory as well as of relativistic quantum mechanics, P.A.M. Dirac, whose insightful and uncompromisingly forthright assessments of these two disciplines have greatly inspired the present work.
17#
發(fā)表于 2025-3-24 14:37:50 | 只看該作者
Quantum Geometries for Electromagnetic Fields,due to the absence of rest frames for such objects. This means the notion of proper time is meaningless for zero-mass particles, and that such particles can be localized only in relation to frames constructed out of massive particles.
18#
發(fā)表于 2025-3-24 15:20:02 | 只看該作者
Geometro-Stochastic Quantum Gravity,covariance feature of CGR reflects the fact that the . fundamental observable entities in CGR are spacetime coincidences (Norton, 1987), which are represented by the points of a Lorentzian manifold. In Einstein’s own words: “..” (Einstein, 1916, 1952, p. 117) — emphasis added.
19#
發(fā)表于 2025-3-24 23:04:02 | 只看該作者
20#
發(fā)表于 2025-3-25 03:08:09 | 只看該作者
The Fibre Bundle Framework for Classical General Relativity, manifold (., .) — i.e., by a 4-dimensional manifold . carrying a Lorentzian metric . — which in the presence of gravitational sources would display non-zero curvature. The mathematical description of such manifolds and of associated tensor structures that was available to Einstein in the second dec
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴城市| 共和县| 南宫市| 崇阳县| 和龙市| 宁德市| 大同市| 漾濞| 南木林县| 黑山县| 娄烦县| 郓城县| 林西县| 永靖县| 桂东县| 建宁县| 宣武区| 庆阳市| 五华县| 明星| 九龙县| 明溪县| 南澳县| 嘉荫县| 杭锦后旗| 茌平县| 多伦县| 祥云县| 牡丹江市| 罗江县| 化隆| 汝城县| 洛扎县| 黄大仙区| 呼玛县| 平远县| 西峡县| 陕西省| 澄江县| 乌海市| 万安县|