找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Field Theory and Noncommutative Geometry; Ursula Carow-Watamura,Yoshiaki Maeda,Satoshi Watam Book 2005 Springer-Verlag Berlin Heid

[復制鏈接]
樓主: supplementary
11#
發(fā)表于 2025-3-23 12:35:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:14:38 | 只看該作者
0075-8450 theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lec
13#
發(fā)表于 2025-3-23 20:13:25 | 只看該作者
Book 2005g the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field..
14#
發(fā)表于 2025-3-24 02:09:19 | 只看該作者
15#
發(fā)表于 2025-3-24 02:50:22 | 只看該作者
16#
發(fā)表于 2025-3-24 07:10:11 | 只看該作者
17#
發(fā)表于 2025-3-24 10:39:53 | 只看該作者
Local Models for Manifolds with Symplectic Connections of Ricci Type*,ion procedure from the Euclidean space R. endowed with a constant symplectic structure and the standard flat connection. We also prove that on the bundle of symplectic frames . over ., there exists a 1-form with values in the algebra .(.+1,R) which locally satisfies a Maurer-Cartan type equation.
18#
發(fā)表于 2025-3-24 16:16:41 | 只看該作者
Universal Deformation Formulae for Three-Dimensional Solvable Lie Groups, solvable Lie group. We also study compatible co-products by generalizing the notion of smash product in the context of Hopf algebras. We investigate in particular the dressing action of the ‘book’ group on .(2). This work is aimed to be applied in a string theoretical context to produce noncommutat
19#
發(fā)表于 2025-3-24 21:29:02 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:40 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
若尔盖县| 且末县| 柳州市| 鹤峰县| 高要市| 将乐县| 淳安县| 佛坪县| 上虞市| 望城县| 孝感市| 新宾| 棋牌| 休宁县| 神农架林区| 南雄市| 景宁| 阿合奇县| 三江| 玉田县| 石台县| 五莲县| 和田县| 搜索| 玛沁县| 东乡族自治县| 靖宇县| 吉林市| 常州市| 柳林县| 翼城县| 南溪县| 新乡市| 桐庐县| 永平县| 响水县| 长武县| 汶上县| 湘潭市| 府谷县| 西宁市|