找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Field Theory and Noncommutative Geometry; Ursula Carow-Watamura,Yoshiaki Maeda,Satoshi Watam Book 2005 Springer-Verlag Berlin Heid

[復制鏈接]
樓主: supplementary
11#
發(fā)表于 2025-3-23 12:35:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:14:38 | 只看該作者
0075-8450 theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lec
13#
發(fā)表于 2025-3-23 20:13:25 | 只看該作者
Book 2005g the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field..
14#
發(fā)表于 2025-3-24 02:09:19 | 只看該作者
15#
發(fā)表于 2025-3-24 02:50:22 | 只看該作者
16#
發(fā)表于 2025-3-24 07:10:11 | 只看該作者
17#
發(fā)表于 2025-3-24 10:39:53 | 只看該作者
Local Models for Manifolds with Symplectic Connections of Ricci Type*,ion procedure from the Euclidean space R. endowed with a constant symplectic structure and the standard flat connection. We also prove that on the bundle of symplectic frames . over ., there exists a 1-form with values in the algebra .(.+1,R) which locally satisfies a Maurer-Cartan type equation.
18#
發(fā)表于 2025-3-24 16:16:41 | 只看該作者
Universal Deformation Formulae for Three-Dimensional Solvable Lie Groups, solvable Lie group. We also study compatible co-products by generalizing the notion of smash product in the context of Hopf algebras. We investigate in particular the dressing action of the ‘book’ group on .(2). This work is aimed to be applied in a string theoretical context to produce noncommutat
19#
發(fā)表于 2025-3-24 21:29:02 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:40 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
广州市| 巍山| 伊通| 西畴县| 高邮市| 博白县| 平果县| 安图县| 科技| 柳河县| 平谷区| 海晏县| 宜宾市| 齐河县| 长宁区| 安平县| 兴义市| 安丘市| 都兰县| 绥宁县| 中宁县| 浙江省| 鱼台县| 苍南县| 和硕县| 平潭县| 马公市| 平阳县| 巢湖市| 雷山县| 高安市| 深圳市| 仪陇县| 阿巴嘎旗| 驻马店市| 涿州市| 诸暨市| 宿松县| 黔西县| 靖州| 徐汇区|