找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Field Theory and Noncommutative Geometry; Ursula Carow-Watamura,Yoshiaki Maeda,Satoshi Watam Book 2005 Springer-Verlag Berlin Heid

[復(fù)制鏈接]
樓主: supplementary
11#
發(fā)表于 2025-3-23 12:35:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:14:38 | 只看該作者
0075-8450 theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lec
13#
發(fā)表于 2025-3-23 20:13:25 | 只看該作者
Book 2005g the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field..
14#
發(fā)表于 2025-3-24 02:09:19 | 只看該作者
15#
發(fā)表于 2025-3-24 02:50:22 | 只看該作者
16#
發(fā)表于 2025-3-24 07:10:11 | 只看該作者
17#
發(fā)表于 2025-3-24 10:39:53 | 只看該作者
Local Models for Manifolds with Symplectic Connections of Ricci Type*,ion procedure from the Euclidean space R. endowed with a constant symplectic structure and the standard flat connection. We also prove that on the bundle of symplectic frames . over ., there exists a 1-form with values in the algebra .(.+1,R) which locally satisfies a Maurer-Cartan type equation.
18#
發(fā)表于 2025-3-24 16:16:41 | 只看該作者
Universal Deformation Formulae for Three-Dimensional Solvable Lie Groups, solvable Lie group. We also study compatible co-products by generalizing the notion of smash product in the context of Hopf algebras. We investigate in particular the dressing action of the ‘book’ group on .(2). This work is aimed to be applied in a string theoretical context to produce noncommutat
19#
發(fā)表于 2025-3-24 21:29:02 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄陵县| 册亨县| 台山市| 灌南县| 海晏县| 增城市| 喀什市| 长子县| 沐川县| 商南县| 甘德县| 刚察县| 兴安县| 休宁县| 密山市| 漳浦县| 衡山县| 平湖市| 土默特右旗| 桂平市| 育儿| 灌阳县| 辉南县| 资中县| 万年县| 康保县| 高州市| 乌兰县| 金湖县| 即墨市| 府谷县| 青阳县| 钟山县| 酒泉市| 同江市| 东阿县| 乳山市| 襄城县| 资溪县| 高州市| 辉南县|