找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Field Theory; By Academician Prof. Kazuhiko Nishijima,Masud Chaichian,Anca Tureanu Book 2023 Springer Nature B.V. 2023 Elementary P

[復(fù)制鏈接]
樓主: introspective
31#
發(fā)表于 2025-3-27 00:48:37 | 只看該作者
What Is Gauge Theory?,between the form of an interaction and the symmetries of the theory. In this chapter, we introduce the general notion of gauge field and gauge theory, and show that one possible answer to the question above is the so-called “gauge principle”. In the following, we shall survey the formalism needed to
32#
發(fā)表于 2025-3-27 02:14:16 | 只看該作者
Spontaneous Symmetry Breaking,ase, a quantum of the gauge field corresponding to the broken or hidden symmetry acquires mass, in contrast to the photon. In this chapter, we will discuss a mechanism whereby the symmetry in the Lagrangian is broken.
33#
發(fā)表于 2025-3-27 08:05:24 | 只看該作者
34#
發(fā)表于 2025-3-27 11:37:31 | 只看該作者
35#
發(fā)表于 2025-3-27 16:41:40 | 只看該作者
,Becchi–Rouet–Stora Transformations,or the gauge field and the fermion field. However, in order to quantize these fields, we need to introduce the gauge-fixing term and the Faddeev–Popov ghost term. Consequently, the invariance under the local gauge transformation is broken. However, a new global invariance shows up in its place. This
36#
發(fā)表于 2025-3-27 19:06:49 | 只看該作者
37#
發(fā)表于 2025-3-28 00:09:58 | 只看該作者
38#
發(fā)表于 2025-3-28 02:58:32 | 只看該作者
Book 2023apanese edition has been initiated and taken care of by theeditors Prof. M. Chaichian and Dr. A. Tureanu from the University of Helsinki, who were close collaborators of Prof. Nishijima. Dr. Yuki Sato, a researcher in particle physics at the University of Nagoya, most kindly accepted to undertake th
39#
發(fā)表于 2025-3-28 06:50:01 | 只看該作者
Dr. A. Tureanu from the University of Helsinki, who were close collaborators of Prof. Nishijima. Dr. Yuki Sato, a researcher in particle physics at the University of Nagoya, most kindly accepted to undertake th978-94-024-2192-7978-94-024-2190-3
40#
發(fā)表于 2025-3-28 14:12:27 | 只看該作者
chreitenden Bewegung. Deswegen dürfen wir die Drehbewegung neben der fortschreitenden Bewegung vernachl?ssigen. — In diesem Kapitel betrachten wir jetzt den anderen Grenz-fall: ein K?rper schreitet als Ganzes nicht fort, seine Bewegung beschr?nkt sich ausschlie?lich auf Drehungen. Die Achse dieser D
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 10:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新野县| 南岸区| 庆阳市| 武功县| 遵化市| 定陶县| 文登市| 南充市| 北票市| 辉县市| 清水县| 澎湖县| 酉阳| 大安市| 高州市| 连平县| 商南县| 图木舒克市| 乌恰县| 洪泽县| 呼玛县| 平远县| 无棣县| 鄂尔多斯市| 旅游| 佛学| 江山市| 华坪县| 长泰县| 乌鲁木齐县| 永寿县| 汝南县| 奇台县| 将乐县| 金阳县| 渭南市| 青川县| 抚宁县| 喀什市| 襄垣县| 万全县|