找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Chaos and Mesoscopic Systems; Mathematical Methods Norman E. Hurt Book 1997 Springer Science+Business Media Dordrecht 1997 Signatur

[復(fù)制鏈接]
樓主: iniquity
11#
發(fā)表于 2025-3-23 11:01:08 | 只看該作者
Dissolving Eigenvalues,is a discrete subgroup of .(2, .). The spectrum of the Laplacian on . consists of a continuous part filling [1/4, .) and a discrete set of eigenvalues of which only finitely many are less than or equal to 1/4.
12#
發(fā)表于 2025-3-23 14:32:13 | 只看該作者
Mesoscopic Structures,n much less than λ, the wave length. Microwave billiards have allowed physicists to experimentally study the transition from integrable to chaotic systems where the spectral statistics changes from Poisson to GOE.
13#
發(fā)表于 2025-3-23 18:39:16 | 只看該作者
Signatures of Quantum Chaos, all was well; v., Boghigas, Giannoni and Schmit (1986) for the Sinai billiard and the stadium billiard, Berry and Tabor (1977) for integrable systems; also note, McDonald and Kaufmann (1988), Berry (1981, 1985), Berry and Robnick (1986), Seligman, Verbarshoot and Zirnbauer (1985) and Berry and Mond
14#
發(fā)表于 2025-3-24 02:02:36 | 只看該作者
15#
發(fā)表于 2025-3-24 03:31:04 | 只看該作者
16#
發(fā)表于 2025-3-24 10:03:08 | 只看該作者
Error Terms,aology. In addition, Berry and coworkers have developed very formally the analogies of the theory of the Riemann zeta function and work in periodic orbit theory, as we have outlined earlier. A classical object of study in number theory is the counting function .(.) = ∑. 1; i.e., the staircase functi
17#
發(fā)表于 2025-3-24 11:33:13 | 只看該作者
Co-Finite Model for Quantum Chaology,rete subgroup of .(2, .). The spectrum of the Laplacian Δ, or the Schr?dinger equation Δ. + λ., on . has been studied by Selberg, Roelcke, Elstrodt and others. More recently, the geodesic triangle spaces, in particular the Artin’s billiards model, have played a basic role in quantum chaology i
18#
發(fā)表于 2025-3-24 17:22:27 | 只看該作者
19#
發(fā)表于 2025-3-24 22:27:40 | 只看該作者
Wigner Time Delay,se. The semiclassical expansion of the Wigner time delay was developed by Balian and Bloch (1974). Several results on the semiclassical expansion of the time delay and on the Wigner time delay in stochastic scattering have been developed recently. In particular, results related to the Wigner time de
20#
發(fā)表于 2025-3-25 01:00:59 | 只看該作者
Scattering Theory for Leaky Tori,the leaky tori models of Gutzwiller. In addition, they form a natural generalization of locally symmetric spaces of constant negative curvature and finite volume. In this chapter we review Müller’s spaces in Section 1. In Section 2 scattering operators are developed. In Section 3 Weyl’s law for meso
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克苏市| 故城县| 高陵县| 连山| 杭州市| 山西省| 通化市| 永州市| 清涧县| 邵阳县| 万年县| 平阳县| 洪雅县| 织金县| 四子王旗| 南陵县| 萨嘎县| 浦东新区| 绥江县| 峡江县| 盐津县| 奇台县| 铁岭市| 益阳市| 南平市| 金阳县| 巩留县| 沽源县| 盖州市| 原平市| 额济纳旗| 曲周县| 明星| 特克斯县| 清河县| 襄垣县| 三河市| 定远县| 清河县| 泸水县| 江永县|